ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeter GIF version

Theorem xmeter 14413
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeter (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)

Proof of Theorem xmeter
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
2 cnvimass 5009 . . . . 5 (𝐷 “ ℝ) ⊆ dom 𝐷
31, 2eqsstri 3202 . . . 4 ⊆ dom 𝐷
4 xmetf 14327 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
53, 4fssdm 5399 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ⊆ (𝑋 × 𝑋))
6 relxp 4753 . . 3 Rel (𝑋 × 𝑋)
7 relss 4731 . . 3 ( ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ))
85, 6, 7mpisyl 1457 . 2 (𝐷 ∈ (∞Met‘𝑋) → Rel )
91xmeterval 14412 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
109biimpa 296 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
1110simp2d 1012 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦𝑋)
1210simp1d 1011 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑥𝑋)
13 simpl 109 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝐷 ∈ (∞Met‘𝑋))
14 xmetsym 14345 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1513, 12, 11, 14syl3anc 1249 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1610simp3d 1013 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
1715, 16eqeltrrd 2267 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
181xmeterval 14412 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
1918adantr 276 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
2011, 12, 17, 19mpbir3and 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦 𝑥)
2112adantrr 479 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
221xmeterval 14412 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)))
2322biimpa 296 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2423adantrl 478 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2524simp2d 1012 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
26 simpl 109 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2716adantrr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ)
2824simp3d 1013 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ)
29 rexadd 9884 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)))
30 readdcl 7968 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ)
3129, 30eqeltrd 2266 . . . . 5 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3227, 28, 31syl2anc 411 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3311adantrr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
34 xmettri 14349 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋𝑦𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
3526, 21, 25, 33, 34syl13anc 1251 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
36 xmetlecl 14344 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ)
3726, 21, 25, 32, 35, 36syl122anc 1258 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ)
381xmeterval 14412 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
3938adantr 276 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
4021, 25, 37, 39mpbir3and 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
41 xmet0 14340 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
42 0re 7988 . . . . . . 7 0 ∈ ℝ
4341, 42eqeltrdi 2280 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) ∈ ℝ)
4443ex 115 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥𝐷𝑥) ∈ ℝ))
4544pm4.71rd 394 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋)))
46 df-3an 982 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ))
47 anidm 396 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
4847anbi2ci 459 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
4946, 48bitri 184 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
5045, 49bitr4di 198 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
511xmeterval 14412 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
5250, 51bitr4d 191 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝑥))
538, 20, 40, 52iserd 6586 1 (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wss 3144   class class class wbr 4018   × cxp 4642  ccnv 4643  dom cdm 4644  cima 4647  Rel wrel 4649  cfv 5235  (class class class)co 5897   Er wer 6557  cr 7841  0cc0 7842   + caddc 7845  *cxr 8022  cle 8024   +𝑒 cxad 9802  ∞Metcxmet 13866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-er 6560  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-2 9009  df-xadd 9805  df-xmet 13874
This theorem is referenced by:  blpnfctr  14416  xmetresbl  14417
  Copyright terms: Public domain W3C validator