ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeter GIF version

Theorem xmeter 12605
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeter (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)

Proof of Theorem xmeter
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
2 cnvimass 4902 . . . . 5 (𝐷 “ ℝ) ⊆ dom 𝐷
31, 2eqsstri 3129 . . . 4 ⊆ dom 𝐷
4 xmetf 12519 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
53, 4fssdm 5287 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ⊆ (𝑋 × 𝑋))
6 relxp 4648 . . 3 Rel (𝑋 × 𝑋)
7 relss 4626 . . 3 ( ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ))
85, 6, 7mpisyl 1422 . 2 (𝐷 ∈ (∞Met‘𝑋) → Rel )
91xmeterval 12604 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
109biimpa 294 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
1110simp2d 994 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦𝑋)
1210simp1d 993 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑥𝑋)
13 simpl 108 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝐷 ∈ (∞Met‘𝑋))
14 xmetsym 12537 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1513, 12, 11, 14syl3anc 1216 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1610simp3d 995 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
1715, 16eqeltrrd 2217 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
181xmeterval 12604 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
1918adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
2011, 12, 17, 19mpbir3and 1164 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦 𝑥)
2112adantrr 470 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
221xmeterval 12604 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)))
2322biimpa 294 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2423adantrl 469 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2524simp2d 994 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
26 simpl 108 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2716adantrr 470 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ)
2824simp3d 995 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ)
29 rexadd 9635 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)))
30 readdcl 7746 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ)
3129, 30eqeltrd 2216 . . . . 5 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3227, 28, 31syl2anc 408 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3311adantrr 470 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
34 xmettri 12541 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋𝑦𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
3526, 21, 25, 33, 34syl13anc 1218 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
36 xmetlecl 12536 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ)
3726, 21, 25, 32, 35, 36syl122anc 1225 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ)
381xmeterval 12604 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
3938adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
4021, 25, 37, 39mpbir3and 1164 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
41 xmet0 12532 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
42 0re 7766 . . . . . . 7 0 ∈ ℝ
4341, 42eqeltrdi 2230 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) ∈ ℝ)
4443ex 114 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥𝐷𝑥) ∈ ℝ))
4544pm4.71rd 391 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋)))
46 df-3an 964 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ))
47 anidm 393 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
4847anbi2ci 454 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
4946, 48bitri 183 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
5045, 49syl6bbr 197 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
511xmeterval 12604 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
5250, 51bitr4d 190 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝑥))
538, 20, 40, 52iserd 6455 1 (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wss 3071   class class class wbr 3929   × cxp 4537  ccnv 4538  dom cdm 4539  cima 4542  Rel wrel 4544  cfv 5123  (class class class)co 5774   Er wer 6426  cr 7619  0cc0 7620   + caddc 7623  *cxr 7799  cle 7801   +𝑒 cxad 9557  ∞Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-er 6429  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xadd 9560  df-xmet 12157
This theorem is referenced by:  blpnfctr  12608  xmetresbl  12609
  Copyright terms: Public domain W3C validator