Step | Hyp | Ref
| Expression |
1 | | xmeter.1 |
. . . . 5
⊢ ∼ =
(◡𝐷 “ ℝ) |
2 | | cnvimass 4967 |
. . . . 5
⊢ (◡𝐷 “ ℝ) ⊆ dom 𝐷 |
3 | 1, 2 | eqsstri 3174 |
. . . 4
⊢ ∼
⊆ dom 𝐷 |
4 | | xmetf 12990 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
5 | 3, 4 | fssdm 5352 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ ⊆ (𝑋 × 𝑋)) |
6 | | relxp 4713 |
. . 3
⊢ Rel
(𝑋 × 𝑋) |
7 | | relss 4691 |
. . 3
⊢ ( ∼
⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ∼ )) |
8 | 5, 6, 7 | mpisyl 1434 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → Rel ∼ ) |
9 | 1 | xmeterval 13075 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))) |
10 | 9 | biimpa 294 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)) |
11 | 10 | simp2d 1000 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∈ 𝑋) |
12 | 10 | simp1d 999 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝑥 ∈ 𝑋) |
13 | | simpl 108 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝐷 ∈ (∞Met‘𝑋)) |
14 | | xmetsym 13008 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
15 | 13, 12, 11, 14 | syl3anc 1228 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
16 | 10 | simp3d 1001 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑥𝐷𝑦) ∈ ℝ) |
17 | 15, 16 | eqeltrrd 2244 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑦𝐷𝑥) ∈ ℝ) |
18 | 1 | xmeterval 13075 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ))) |
19 | 18 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ))) |
20 | 11, 12, 17, 19 | mpbir3and 1170 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∼ 𝑥) |
21 | 12 | adantrr 471 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∈ 𝑋) |
22 | 1 | xmeterval 13075 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))) |
23 | 22 | biimpa 294 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∼ 𝑧) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)) |
24 | 23 | adantrl 470 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)) |
25 | 24 | simp2d 1000 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑧 ∈ 𝑋) |
26 | | simpl 108 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋)) |
27 | 16 | adantrr 471 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ) |
28 | 24 | simp3d 1001 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ) |
29 | | rexadd 9788 |
. . . . . 6
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧))) |
30 | | readdcl 7879 |
. . . . . 6
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ) |
31 | 29, 30 | eqeltrd 2243 |
. . . . 5
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ) |
32 | 27, 28, 31 | syl2anc 409 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ) |
33 | 11 | adantrr 471 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑦 ∈ 𝑋) |
34 | | xmettri 13012 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧))) |
35 | 26, 21, 25, 33, 34 | syl13anc 1230 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧))) |
36 | | xmetlecl 13007 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ) |
37 | 26, 21, 25, 32, 35, 36 | syl122anc 1237 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ) |
38 | 1 | xmeterval 13075 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ))) |
39 | 38 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ))) |
40 | 21, 25, 37, 39 | mpbir3and 1170 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∼ 𝑧) |
41 | | xmet0 13003 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷𝑥) = 0) |
42 | | 0re 7899 |
. . . . . . 7
⊢ 0 ∈
ℝ |
43 | 41, 42 | eqeltrdi 2257 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷𝑥) ∈ ℝ) |
44 | 43 | ex 114 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 → (𝑥𝐷𝑥) ∈ ℝ)) |
45 | 44 | pm4.71rd 392 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥 ∈ 𝑋))) |
46 | | df-3an 970 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ)) |
47 | | anidm 394 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ↔ 𝑥 ∈ 𝑋) |
48 | 47 | anbi2ci 455 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥 ∈ 𝑋)) |
49 | 46, 48 | bitri 183 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥 ∈ 𝑋)) |
50 | 45, 49 | bitr4di 197 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ))) |
51 | 1 | xmeterval 13075 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ))) |
52 | 50, 51 | bitr4d 190 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥)) |
53 | 8, 20, 40, 52 | iserd 6527 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ Er 𝑋) |