ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeter GIF version

Theorem xmeter 14756
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeter (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)

Proof of Theorem xmeter
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
2 cnvimass 5033 . . . . 5 (𝐷 “ ℝ) ⊆ dom 𝐷
31, 2eqsstri 3216 . . . 4 ⊆ dom 𝐷
4 xmetf 14670 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
53, 4fssdm 5425 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ⊆ (𝑋 × 𝑋))
6 relxp 4773 . . 3 Rel (𝑋 × 𝑋)
7 relss 4751 . . 3 ( ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ))
85, 6, 7mpisyl 1457 . 2 (𝐷 ∈ (∞Met‘𝑋) → Rel )
91xmeterval 14755 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
109biimpa 296 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
1110simp2d 1012 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦𝑋)
1210simp1d 1011 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑥𝑋)
13 simpl 109 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝐷 ∈ (∞Met‘𝑋))
14 xmetsym 14688 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1513, 12, 11, 14syl3anc 1249 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1610simp3d 1013 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
1715, 16eqeltrrd 2274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
181xmeterval 14755 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
1918adantr 276 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
2011, 12, 17, 19mpbir3and 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦 𝑥)
2112adantrr 479 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
221xmeterval 14755 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)))
2322biimpa 296 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2423adantrl 478 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2524simp2d 1012 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
26 simpl 109 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2716adantrr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ)
2824simp3d 1013 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ)
29 rexadd 9944 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)))
30 readdcl 8022 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ)
3129, 30eqeltrd 2273 . . . . 5 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3227, 28, 31syl2anc 411 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3311adantrr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
34 xmettri 14692 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋𝑦𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
3526, 21, 25, 33, 34syl13anc 1251 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
36 xmetlecl 14687 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ)
3726, 21, 25, 32, 35, 36syl122anc 1258 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ)
381xmeterval 14755 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
3938adantr 276 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
4021, 25, 37, 39mpbir3and 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
41 xmet0 14683 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
42 0re 8043 . . . . . . 7 0 ∈ ℝ
4341, 42eqeltrdi 2287 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) ∈ ℝ)
4443ex 115 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥𝐷𝑥) ∈ ℝ))
4544pm4.71rd 394 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋)))
46 df-3an 982 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ))
47 anidm 396 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
4847anbi2ci 459 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
4946, 48bitri 184 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
5045, 49bitr4di 198 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
511xmeterval 14755 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
5250, 51bitr4d 191 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝑥))
538, 20, 40, 52iserd 6627 1 (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4034   × cxp 4662  ccnv 4663  dom cdm 4664  cima 4667  Rel wrel 4669  cfv 5259  (class class class)co 5925   Er wer 6598  cr 7895  0cc0 7896   + caddc 7899  *cxr 8077  cle 8079   +𝑒 cxad 9862  ∞Metcxmet 14168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-er 6601  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-2 9066  df-xadd 9865  df-xmet 14176
This theorem is referenced by:  blpnfctr  14759  xmetresbl  14760
  Copyright terms: Public domain W3C validator