Step | Hyp | Ref
| Expression |
1 | | xmeter.1 |
. . . . 5
β’ βΌ =
(β‘π· β β) |
2 | | cnvimass 4992 |
. . . . 5
β’ (β‘π· β β) β dom π· |
3 | 1, 2 | eqsstri 3188 |
. . . 4
β’ βΌ
β dom π· |
4 | | xmetf 13853 |
. . . 4
β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) |
5 | 3, 4 | fssdm 5381 |
. . 3
β’ (π· β (βMetβπ) β βΌ β (π Γ π)) |
6 | | relxp 4736 |
. . 3
β’ Rel
(π Γ π) |
7 | | relss 4714 |
. . 3
β’ ( βΌ
β (π Γ π) β (Rel (π Γ π) β Rel βΌ )) |
8 | 5, 6, 7 | mpisyl 1446 |
. 2
β’ (π· β (βMetβπ) β Rel βΌ ) |
9 | 1 | xmeterval 13938 |
. . . . 5
β’ (π· β (βMetβπ) β (π₯ βΌ π¦ β (π₯ β π β§ π¦ β π β§ (π₯π·π¦) β β))) |
10 | 9 | biimpa 296 |
. . . 4
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β (π₯ β π β§ π¦ β π β§ (π₯π·π¦) β β)) |
11 | 10 | simp2d 1010 |
. . 3
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β π¦ β π) |
12 | 10 | simp1d 1009 |
. . 3
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β π₯ β π) |
13 | | simpl 109 |
. . . . 5
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β π· β (βMetβπ)) |
14 | | xmetsym 13871 |
. . . . 5
β’ ((π· β (βMetβπ) β§ π₯ β π β§ π¦ β π) β (π₯π·π¦) = (π¦π·π₯)) |
15 | 13, 12, 11, 14 | syl3anc 1238 |
. . . 4
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β (π₯π·π¦) = (π¦π·π₯)) |
16 | 10 | simp3d 1011 |
. . . 4
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β (π₯π·π¦) β β) |
17 | 15, 16 | eqeltrrd 2255 |
. . 3
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β (π¦π·π₯) β β) |
18 | 1 | xmeterval 13938 |
. . . 4
β’ (π· β (βMetβπ) β (π¦ βΌ π₯ β (π¦ β π β§ π₯ β π β§ (π¦π·π₯) β β))) |
19 | 18 | adantr 276 |
. . 3
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β (π¦ βΌ π₯ β (π¦ β π β§ π₯ β π β§ (π¦π·π₯) β β))) |
20 | 11, 12, 17, 19 | mpbir3and 1180 |
. 2
β’ ((π· β (βMetβπ) β§ π₯ βΌ π¦) β π¦ βΌ π₯) |
21 | 12 | adantrr 479 |
. . 3
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β π₯ β π) |
22 | 1 | xmeterval 13938 |
. . . . . 6
β’ (π· β (βMetβπ) β (π¦ βΌ π§ β (π¦ β π β§ π§ β π β§ (π¦π·π§) β β))) |
23 | 22 | biimpa 296 |
. . . . 5
β’ ((π· β (βMetβπ) β§ π¦ βΌ π§) β (π¦ β π β§ π§ β π β§ (π¦π·π§) β β)) |
24 | 23 | adantrl 478 |
. . . 4
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β (π¦ β π β§ π§ β π β§ (π¦π·π§) β β)) |
25 | 24 | simp2d 1010 |
. . 3
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β π§ β π) |
26 | | simpl 109 |
. . . 4
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β π· β (βMetβπ)) |
27 | 16 | adantrr 479 |
. . . . 5
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β (π₯π·π¦) β β) |
28 | 24 | simp3d 1011 |
. . . . 5
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β (π¦π·π§) β β) |
29 | | rexadd 9852 |
. . . . . 6
β’ (((π₯π·π¦) β β β§ (π¦π·π§) β β) β ((π₯π·π¦) +π (π¦π·π§)) = ((π₯π·π¦) + (π¦π·π§))) |
30 | | readdcl 7937 |
. . . . . 6
β’ (((π₯π·π¦) β β β§ (π¦π·π§) β β) β ((π₯π·π¦) + (π¦π·π§)) β β) |
31 | 29, 30 | eqeltrd 2254 |
. . . . 5
β’ (((π₯π·π¦) β β β§ (π¦π·π§) β β) β ((π₯π·π¦) +π (π¦π·π§)) β β) |
32 | 27, 28, 31 | syl2anc 411 |
. . . 4
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β ((π₯π·π¦) +π (π¦π·π§)) β β) |
33 | 11 | adantrr 479 |
. . . . 5
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β π¦ β π) |
34 | | xmettri 13875 |
. . . . 5
β’ ((π· β (βMetβπ) β§ (π₯ β π β§ π§ β π β§ π¦ β π)) β (π₯π·π§) β€ ((π₯π·π¦) +π (π¦π·π§))) |
35 | 26, 21, 25, 33, 34 | syl13anc 1240 |
. . . 4
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β (π₯π·π§) β€ ((π₯π·π¦) +π (π¦π·π§))) |
36 | | xmetlecl 13870 |
. . . 4
β’ ((π· β (βMetβπ) β§ (π₯ β π β§ π§ β π) β§ (((π₯π·π¦) +π (π¦π·π§)) β β β§ (π₯π·π§) β€ ((π₯π·π¦) +π (π¦π·π§)))) β (π₯π·π§) β β) |
37 | 26, 21, 25, 32, 35, 36 | syl122anc 1247 |
. . 3
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β (π₯π·π§) β β) |
38 | 1 | xmeterval 13938 |
. . . 4
β’ (π· β (βMetβπ) β (π₯ βΌ π§ β (π₯ β π β§ π§ β π β§ (π₯π·π§) β β))) |
39 | 38 | adantr 276 |
. . 3
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β (π₯ βΌ π§ β (π₯ β π β§ π§ β π β§ (π₯π·π§) β β))) |
40 | 21, 25, 37, 39 | mpbir3and 1180 |
. 2
β’ ((π· β (βMetβπ) β§ (π₯ βΌ π¦ β§ π¦ βΌ π§)) β π₯ βΌ π§) |
41 | | xmet0 13866 |
. . . . . . 7
β’ ((π· β (βMetβπ) β§ π₯ β π) β (π₯π·π₯) = 0) |
42 | | 0re 7957 |
. . . . . . 7
β’ 0 β
β |
43 | 41, 42 | eqeltrdi 2268 |
. . . . . 6
β’ ((π· β (βMetβπ) β§ π₯ β π) β (π₯π·π₯) β β) |
44 | 43 | ex 115 |
. . . . 5
β’ (π· β (βMetβπ) β (π₯ β π β (π₯π·π₯) β β)) |
45 | 44 | pm4.71rd 394 |
. . . 4
β’ (π· β (βMetβπ) β (π₯ β π β ((π₯π·π₯) β β β§ π₯ β π))) |
46 | | df-3an 980 |
. . . . 5
β’ ((π₯ β π β§ π₯ β π β§ (π₯π·π₯) β β) β ((π₯ β π β§ π₯ β π) β§ (π₯π·π₯) β β)) |
47 | | anidm 396 |
. . . . . 6
β’ ((π₯ β π β§ π₯ β π) β π₯ β π) |
48 | 47 | anbi2ci 459 |
. . . . 5
β’ (((π₯ β π β§ π₯ β π) β§ (π₯π·π₯) β β) β ((π₯π·π₯) β β β§ π₯ β π)) |
49 | 46, 48 | bitri 184 |
. . . 4
β’ ((π₯ β π β§ π₯ β π β§ (π₯π·π₯) β β) β ((π₯π·π₯) β β β§ π₯ β π)) |
50 | 45, 49 | bitr4di 198 |
. . 3
β’ (π· β (βMetβπ) β (π₯ β π β (π₯ β π β§ π₯ β π β§ (π₯π·π₯) β β))) |
51 | 1 | xmeterval 13938 |
. . 3
β’ (π· β (βMetβπ) β (π₯ βΌ π₯ β (π₯ β π β§ π₯ β π β§ (π₯π·π₯) β β))) |
52 | 50, 51 | bitr4d 191 |
. 2
β’ (π· β (βMetβπ) β (π₯ β π β π₯ βΌ π₯)) |
53 | 8, 20, 40, 52 | iserd 6561 |
1
β’ (π· β (βMetβπ) β βΌ Er π) |