ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeter GIF version

Theorem xmeter 14604
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeter (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)

Proof of Theorem xmeter
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5 = (𝐷 “ ℝ)
2 cnvimass 5028 . . . . 5 (𝐷 “ ℝ) ⊆ dom 𝐷
31, 2eqsstri 3211 . . . 4 ⊆ dom 𝐷
4 xmetf 14518 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
53, 4fssdm 5418 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ⊆ (𝑋 × 𝑋))
6 relxp 4768 . . 3 Rel (𝑋 × 𝑋)
7 relss 4746 . . 3 ( ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ))
85, 6, 7mpisyl 1457 . 2 (𝐷 ∈ (∞Met‘𝑋) → Rel )
91xmeterval 14603 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
109biimpa 296 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
1110simp2d 1012 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦𝑋)
1210simp1d 1011 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑥𝑋)
13 simpl 109 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝐷 ∈ (∞Met‘𝑋))
14 xmetsym 14536 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1513, 12, 11, 14syl3anc 1249 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
1610simp3d 1013 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
1715, 16eqeltrrd 2271 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
181xmeterval 14603 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
1918adantr 276 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ)))
2011, 12, 17, 19mpbir3and 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝑦) → 𝑦 𝑥)
2112adantrr 479 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
221xmeterval 14603 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)))
2322biimpa 296 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2423adantrl 478 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))
2524simp2d 1012 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
26 simpl 109 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2716adantrr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ)
2824simp3d 1013 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ)
29 rexadd 9918 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)))
30 readdcl 7998 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ)
3129, 30eqeltrd 2270 . . . . 5 (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3227, 28, 31syl2anc 411 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ)
3311adantrr 479 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
34 xmettri 14540 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋𝑦𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
3526, 21, 25, 33, 34syl13anc 1251 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))
36 xmetlecl 14535 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑧𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ)
3726, 21, 25, 32, 35, 36syl122anc 1258 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ)
381xmeterval 14603 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
3938adantr 276 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ)))
4021, 25, 37, 39mpbir3and 1182 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
41 xmet0 14531 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) = 0)
42 0re 8019 . . . . . . 7 0 ∈ ℝ
4341, 42eqeltrdi 2284 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐷𝑥) ∈ ℝ)
4443ex 115 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥𝐷𝑥) ∈ ℝ))
4544pm4.71rd 394 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋)))
46 df-3an 982 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ))
47 anidm 396 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
4847anbi2ci 459 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
4946, 48bitri 184 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥𝑋))
5045, 49bitr4di 198 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
511xmeterval 14603 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ)))
5250, 51bitr4d 191 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝑥))
538, 20, 40, 52iserd 6613 1 (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wss 3153   class class class wbr 4029   × cxp 4657  ccnv 4658  dom cdm 4659  cima 4662  Rel wrel 4664  cfv 5254  (class class class)co 5918   Er wer 6584  cr 7871  0cc0 7872   + caddc 7875  *cxr 8053  cle 8055   +𝑒 cxad 9836  ∞Metcxmet 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-er 6587  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-2 9041  df-xadd 9839  df-xmet 14040
This theorem is referenced by:  blpnfctr  14607  xmetresbl  14608
  Copyright terms: Public domain W3C validator