ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsinds GIF version

Theorem uzsinds 10589
Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
uzsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
uzsinds.2 (𝑥 = 𝑁 → (𝜑𝜒))
uzsinds.3 (𝑥 ∈ (ℤ𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑))
Assertion
Ref Expression
uzsinds (𝑁 ∈ (ℤ𝑀) → 𝜒)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑀,𝑦   𝑥,𝑁   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝑁(𝑦)

Proof of Theorem uzsinds
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzsinds.2 . 2 (𝑥 = 𝑁 → (𝜑𝜒))
2 oveq2 5952 . . . 4 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
32raleqdv 2708 . . 3 (𝑤 = 𝑀 → (∀𝑥 ∈ (𝑀...𝑤)𝜑 ↔ ∀𝑥 ∈ (𝑀...𝑀)𝜑))
4 oveq2 5952 . . . 4 (𝑤 = 𝑘 → (𝑀...𝑤) = (𝑀...𝑘))
54raleqdv 2708 . . 3 (𝑤 = 𝑘 → (∀𝑥 ∈ (𝑀...𝑤)𝜑 ↔ ∀𝑥 ∈ (𝑀...𝑘)𝜑))
6 oveq2 5952 . . . 4 (𝑤 = (𝑘 + 1) → (𝑀...𝑤) = (𝑀...(𝑘 + 1)))
76raleqdv 2708 . . 3 (𝑤 = (𝑘 + 1) → (∀𝑥 ∈ (𝑀...𝑤)𝜑 ↔ ∀𝑥 ∈ (𝑀...(𝑘 + 1))𝜑))
8 oveq2 5952 . . . 4 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
98raleqdv 2708 . . 3 (𝑤 = 𝑁 → (∀𝑥 ∈ (𝑀...𝑤)𝜑 ↔ ∀𝑥 ∈ (𝑀...𝑁)𝜑))
10 ral0 3562 . . . . . . 7 𝑦 ∈ ∅ 𝜓
11 zre 9376 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211ltm1d 9005 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀)
13 peano2zm 9410 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
14 fzn 10164 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1513, 14mpdan 421 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
1612, 15mpbid 147 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅)
1716raleqdv 2708 . . . . . . 7 (𝑀 ∈ ℤ → (∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓 ↔ ∀𝑦 ∈ ∅ 𝜓))
1810, 17mpbiri 168 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓)
19 uzid 9662 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
20 uzsinds.3 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑))
2120rgen 2559 . . . . . . 7 𝑥 ∈ (ℤ𝑀)(∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑)
22 nfv 1551 . . . . . . . . 9 𝑥𝑦 ∈ (𝑀...(𝑀 − 1))𝜓
23 nfsbc1v 3017 . . . . . . . . 9 𝑥[𝑀 / 𝑥]𝜑
2422, 23nfim 1595 . . . . . . . 8 𝑥(∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓[𝑀 / 𝑥]𝜑)
25 oveq1 5951 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥 − 1) = (𝑀 − 1))
2625oveq2d 5960 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑀...(𝑥 − 1)) = (𝑀...(𝑀 − 1)))
2726raleqdv 2708 . . . . . . . . 9 (𝑥 = 𝑀 → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 ↔ ∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓))
28 sbceq1a 3008 . . . . . . . . 9 (𝑥 = 𝑀 → (𝜑[𝑀 / 𝑥]𝜑))
2927, 28imbi12d 234 . . . . . . . 8 (𝑥 = 𝑀 → ((∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑) ↔ (∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓[𝑀 / 𝑥]𝜑)))
3024, 29rspc 2871 . . . . . . 7 (𝑀 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑) → (∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓[𝑀 / 𝑥]𝜑)))
3119, 21, 30mpisyl 1466 . . . . . 6 (𝑀 ∈ ℤ → (∀𝑦 ∈ (𝑀...(𝑀 − 1))𝜓[𝑀 / 𝑥]𝜑))
3218, 31mpd 13 . . . . 5 (𝑀 ∈ ℤ → [𝑀 / 𝑥]𝜑)
33 ralsns 3671 . . . . 5 (𝑀 ∈ ℤ → (∀𝑥 ∈ {𝑀}𝜑[𝑀 / 𝑥]𝜑))
3432, 33mpbird 167 . . . 4 (𝑀 ∈ ℤ → ∀𝑥 ∈ {𝑀}𝜑)
35 fzsn 10188 . . . . 5 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3635raleqdv 2708 . . . 4 (𝑀 ∈ ℤ → (∀𝑥 ∈ (𝑀...𝑀)𝜑 ↔ ∀𝑥 ∈ {𝑀}𝜑))
3734, 36mpbird 167 . . 3 (𝑀 ∈ ℤ → ∀𝑥 ∈ (𝑀...𝑀)𝜑)
38 simpr 110 . . . . . 6 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → ∀𝑥 ∈ (𝑀...𝑘)𝜑)
39 uzsinds.1 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜓))
4039cbvralv 2738 . . . . . . . . 9 (∀𝑥 ∈ (𝑀...𝑘)𝜑 ↔ ∀𝑦 ∈ (𝑀...𝑘)𝜓)
4138, 40sylib 122 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → ∀𝑦 ∈ (𝑀...𝑘)𝜓)
42 eluzelz 9657 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4342adantr 276 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → 𝑘 ∈ ℤ)
4443zcnd 9496 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → 𝑘 ∈ ℂ)
45 1cnd 8088 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → 1 ∈ ℂ)
4644, 45pncand 8384 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘)
4746oveq2d 5960 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (𝑀...((𝑘 + 1) − 1)) = (𝑀...𝑘))
4847raleqdv 2708 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (∀𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓 ↔ ∀𝑦 ∈ (𝑀...𝑘)𝜓))
49 peano2uz 9704 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
5049adantr 276 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ𝑀))
51 nfv 1551 . . . . . . . . . . . 12 𝑥𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓
52 nfsbc1v 3017 . . . . . . . . . . . 12 𝑥[(𝑘 + 1) / 𝑥]𝜑
5351, 52nfim 1595 . . . . . . . . . . 11 𝑥(∀𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓[(𝑘 + 1) / 𝑥]𝜑)
54 oveq1 5951 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1))
5554oveq2d 5960 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (𝑀...(𝑥 − 1)) = (𝑀...((𝑘 + 1) − 1)))
5655raleqdv 2708 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓 ↔ ∀𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓))
57 sbceq1a 3008 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → (𝜑[(𝑘 + 1) / 𝑥]𝜑))
5856, 57imbi12d 234 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑) ↔ (∀𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓[(𝑘 + 1) / 𝑥]𝜑)))
5953, 58rspc 2871 . . . . . . . . . 10 ((𝑘 + 1) ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑) → (∀𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓[(𝑘 + 1) / 𝑥]𝜑)))
6050, 21, 59mpisyl 1466 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (∀𝑦 ∈ (𝑀...((𝑘 + 1) − 1))𝜓[(𝑘 + 1) / 𝑥]𝜑))
6148, 60sylbird 170 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (∀𝑦 ∈ (𝑀...𝑘)𝜓[(𝑘 + 1) / 𝑥]𝜑))
6241, 61mpd 13 . . . . . . 7 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑)
6342peano2zd 9498 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ ℤ)
6463adantr 276 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (𝑘 + 1) ∈ ℤ)
65 ralsns 3671 . . . . . . . 8 ((𝑘 + 1) ∈ ℤ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
6664, 65syl 14 . . . . . . 7 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
6762, 66mpbird 167 . . . . . 6 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → ∀𝑥 ∈ {(𝑘 + 1)}𝜑)
68 ralun 3355 . . . . . 6 ((∀𝑥 ∈ (𝑀...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑) → ∀𝑥 ∈ ((𝑀...𝑘) ∪ {(𝑘 + 1)})𝜑)
6938, 67, 68syl2anc 411 . . . . 5 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → ∀𝑥 ∈ ((𝑀...𝑘) ∪ {(𝑘 + 1)})𝜑)
70 fzsuc 10191 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (𝑀...(𝑘 + 1)) = ((𝑀...𝑘) ∪ {(𝑘 + 1)}))
7170raleqdv 2708 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (∀𝑥 ∈ (𝑀...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((𝑀...𝑘) ∪ {(𝑘 + 1)})𝜑))
7271adantr 276 . . . . 5 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → (∀𝑥 ∈ (𝑀...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((𝑀...𝑘) ∪ {(𝑘 + 1)})𝜑))
7369, 72mpbird 167 . . . 4 ((𝑘 ∈ (ℤ𝑀) ∧ ∀𝑥 ∈ (𝑀...𝑘)𝜑) → ∀𝑥 ∈ (𝑀...(𝑘 + 1))𝜑)
7473ex 115 . . 3 (𝑘 ∈ (ℤ𝑀) → (∀𝑥 ∈ (𝑀...𝑘)𝜑 → ∀𝑥 ∈ (𝑀...(𝑘 + 1))𝜑))
753, 5, 7, 9, 37, 74uzind4 9709 . 2 (𝑁 ∈ (ℤ𝑀) → ∀𝑥 ∈ (𝑀...𝑁)𝜑)
76 eluzfz2 10154 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
771, 75, 76rspcdva 2882 1 (𝑁 ∈ (ℤ𝑀) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  [wsbc 2998  cun 3164  c0 3460  {csn 3633   class class class wbr 4044  cfv 5271  (class class class)co 5944  1c1 7926   + caddc 7928   < clt 8107  cmin 8243  cz 9372  cuz 9648  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by:  nnsinds  10590  nn0sinds  10591
  Copyright terms: Public domain W3C validator