| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > djudomr | GIF version | ||
| Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| djudomr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-inr 7114 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1 | funmpt2 5297 | . . . 4 ⊢ Fun inr | 
| 3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 4 | resfunexg 5783 | . . . 4 ⊢ ((Fun inr ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) | 
| 6 | inrresf1 7128 | . . 3 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | |
| 7 | f1eq1 5458 | . . . 4 ⊢ (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵) ↔ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
| 8 | 7 | spcegv 2852 | . . 3 ⊢ ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | 
| 9 | 5, 6, 8 | mpisyl 1457 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵)) | 
| 10 | djuex 7109 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 11 | brdomg 6807 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | 
| 13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 〈cop 3625 class class class wbr 4033 ↾ cres 4665 Fun wfun 5252 –1-1→wf1 5255 1oc1o 6467 ≼ cdom 6798 ⊔ cdju 7103 inrcinr 7112 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dom 6801 df-dju 7104 df-inr 7114 | 
| This theorem is referenced by: sbthom 15670 | 
| Copyright terms: Public domain | W3C validator |