| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudomr | GIF version | ||
| Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| djudomr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 7165 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1 | funmpt2 5319 | . . . 4 ⊢ Fun inr |
| 3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 4 | resfunexg 5818 | . . . 4 ⊢ ((Fun inr ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) |
| 6 | inrresf1 7179 | . . 3 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | |
| 7 | f1eq1 5488 | . . . 4 ⊢ (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵) ↔ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
| 8 | 7 | spcegv 2865 | . . 3 ⊢ ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
| 9 | 5, 6, 8 | mpisyl 1467 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵)) |
| 10 | djuex 7160 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 11 | brdomg 6850 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
| 13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 〈cop 3641 class class class wbr 4051 ↾ cres 4685 Fun wfun 5274 –1-1→wf1 5277 1oc1o 6508 ≼ cdom 6839 ⊔ cdju 7154 inrcinr 7163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1st 6239 df-2nd 6240 df-1o 6515 df-dom 6842 df-dju 7155 df-inr 7165 |
| This theorem is referenced by: sbthom 16106 |
| Copyright terms: Public domain | W3C validator |