ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudomr GIF version

Theorem djudomr 7348
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudomr ((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))

Proof of Theorem djudomr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-inr 7165 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
21funmpt2 5319 . . . 4 Fun inr
3 simpr 110 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
4 resfunexg 5818 . . . 4 ((Fun inr ∧ 𝐵𝑊) → (inr ↾ 𝐵) ∈ V)
52, 3, 4sylancr 414 . . 3 ((𝐴𝑉𝐵𝑊) → (inr ↾ 𝐵) ∈ V)
6 inrresf1 7179 . . 3 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
7 f1eq1 5488 . . . 4 (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵1-1→(𝐴𝐵) ↔ (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)))
87spcegv 2865 . . 3 ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵1-1→(𝐴𝐵) → ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵)))
95, 6, 8mpisyl 1467 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵))
10 djuex 7160 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
11 brdomg 6850 . . 3 ((𝐴𝐵) ∈ V → (𝐵 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵)))
1210, 11syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵)))
139, 12mpbird 167 1 ((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1516  wcel 2177  Vcvv 2773  cop 3641   class class class wbr 4051  cres 4685  Fun wfun 5274  1-1wf1 5277  1oc1o 6508  cdom 6839  cdju 7154  inrcinr 7163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1st 6239  df-2nd 6240  df-1o 6515  df-dom 6842  df-dju 7155  df-inr 7165
This theorem is referenced by:  sbthom  16106
  Copyright terms: Public domain W3C validator