| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudomr | GIF version | ||
| Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| djudomr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr 7149 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
| 2 | 1 | funmpt2 5309 | . . . 4 ⊢ Fun inr |
| 3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 4 | resfunexg 5804 | . . . 4 ⊢ ((Fun inr ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) |
| 6 | inrresf1 7163 | . . 3 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | |
| 7 | f1eq1 5475 | . . . 4 ⊢ (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵) ↔ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
| 8 | 7 | spcegv 2860 | . . 3 ⊢ ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
| 9 | 5, 6, 8 | mpisyl 1465 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵)) |
| 10 | djuex 7144 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 11 | brdomg 6836 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
| 13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 〈cop 3635 class class class wbr 4043 ↾ cres 4676 Fun wfun 5264 –1-1→wf1 5267 1oc1o 6494 ≼ cdom 6825 ⊔ cdju 7138 inrcinr 7147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-dom 6828 df-dju 7139 df-inr 7149 |
| This theorem is referenced by: sbthom 15898 |
| Copyright terms: Public domain | W3C validator |