Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djudomr | GIF version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudomr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 7013 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1 | funmpt2 5227 | . . . 4 ⊢ Fun inr |
3 | simpr 109 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
4 | resfunexg 5706 | . . . 4 ⊢ ((Fun inr ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) | |
5 | 2, 3, 4 | sylancr 411 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) |
6 | inrresf1 7027 | . . 3 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | |
7 | f1eq1 5388 | . . . 4 ⊢ (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵) ↔ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
8 | 7 | spcegv 2814 | . . 3 ⊢ ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
9 | 5, 6, 8 | mpisyl 1434 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵)) |
10 | djuex 7008 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
11 | brdomg 6714 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
13 | 9, 12 | mpbird 166 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 〈cop 3579 class class class wbr 3982 ↾ cres 4606 Fun wfun 5182 –1-1→wf1 5185 1oc1o 6377 ≼ cdom 6705 ⊔ cdju 7002 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dom 6708 df-dju 7003 df-inr 7013 |
This theorem is referenced by: sbthom 13905 |
Copyright terms: Public domain | W3C validator |