ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudomr GIF version

Theorem djudomr 7398
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
djudomr ((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))

Proof of Theorem djudomr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-inr 7211 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
21funmpt2 5356 . . . 4 Fun inr
3 simpr 110 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
4 resfunexg 5859 . . . 4 ((Fun inr ∧ 𝐵𝑊) → (inr ↾ 𝐵) ∈ V)
52, 3, 4sylancr 414 . . 3 ((𝐴𝑉𝐵𝑊) → (inr ↾ 𝐵) ∈ V)
6 inrresf1 7225 . . 3 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
7 f1eq1 5525 . . . 4 (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵1-1→(𝐴𝐵) ↔ (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)))
87spcegv 2891 . . 3 ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵1-1→(𝐴𝐵) → ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵)))
95, 6, 8mpisyl 1489 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵))
10 djuex 7206 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
11 brdomg 6895 . . 3 ((𝐴𝐵) ∈ V → (𝐵 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵)))
1210, 11syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ≼ (𝐴𝐵) ↔ ∃𝑓 𝑓:𝐵1-1→(𝐴𝐵)))
139, 12mpbird 167 1 ((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1538  wcel 2200  Vcvv 2799  cop 3669   class class class wbr 4082  cres 4720  Fun wfun 5311  1-1wf1 5314  1oc1o 6553  cdom 6884  cdju 7200  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dom 6887  df-dju 7201  df-inr 7211
This theorem is referenced by:  sbthom  16353
  Copyright terms: Public domain W3C validator