![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djudomr | GIF version |
Description: A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
djudomr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 7107 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1 | funmpt2 5293 | . . . 4 ⊢ Fun inr |
3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
4 | resfunexg 5779 | . . . 4 ⊢ ((Fun inr ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) | |
5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inr ↾ 𝐵) ∈ V) |
6 | inrresf1 7121 | . . 3 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | |
7 | f1eq1 5454 | . . . 4 ⊢ (𝑓 = (inr ↾ 𝐵) → (𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵) ↔ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
8 | 7 | spcegv 2848 | . . 3 ⊢ ((inr ↾ 𝐵) ∈ V → ((inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
9 | 5, 6, 8 | mpisyl 1457 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵)) |
10 | djuex 7102 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
11 | brdomg 6802 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) | |
12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ≼ (𝐴 ⊔ 𝐵) ↔ ∃𝑓 𝑓:𝐵–1-1→(𝐴 ⊔ 𝐵))) |
13 | 9, 12 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3621 class class class wbr 4029 ↾ cres 4661 Fun wfun 5248 –1-1→wf1 5251 1oc1o 6462 ≼ cdom 6793 ⊔ cdju 7096 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 df-1o 6469 df-dom 6796 df-dju 7097 df-inr 7107 |
This theorem is referenced by: sbthom 15516 |
Copyright terms: Public domain | W3C validator |