ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle GIF version

Theorem ltoddhalfle 11845
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))

Proof of Theorem ltoddhalfle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11825 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 halfre 9084 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ
32a1i 9 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1 / 2) ∈ ℝ)
4 1red 7928 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 1 ∈ ℝ)
5 zre 9209 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
63, 4, 53jca 1172 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
76adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
8 halflt1 9088 . . . . . . . . . . . . 13 (1 / 2) < 1
9 axltadd 7982 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1 → (𝑛 + (1 / 2)) < (𝑛 + 1)))
107, 8, 9mpisyl 1439 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1))
11 zre 9209 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantl 275 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
135, 3readdcld 7942 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈ ℝ)
1413adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈ ℝ)
15 peano2z 9241 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℤ)
1615zred 9327 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℝ)
1716adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
18 lttr 7986 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
1912, 14, 17, 18syl3anc 1233 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
2010, 19mpan2d 426 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1)))
21 zleltp1 9260 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2221ancoms 266 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2320, 22sylibrd 168 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀𝑛))
24 halfgt0 9086 . . . . . . . . . . . 12 0 < (1 / 2)
253, 5jca 304 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
2625adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
27 ltaddpos 8364 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2826, 27syl 14 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2924, 28mpbii 147 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2)))
305adantr 274 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℝ)
31 lelttr 8001 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3212, 30, 14, 31syl3anc 1233 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3329, 32mpan2d 426 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + (1 / 2))))
3423, 33impbid 128 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀𝑛))
35 zcn 9210 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
36 1cnd 7929 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 1 ∈ ℂ)
37 2cn 8942 . . . . . . . . . . . . . 14 2 ∈ ℂ
38 2ap0 8964 . . . . . . . . . . . . . 14 2 # 0
3937, 38pm3.2i 270 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 # 0)
4039a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
41 muldivdirap 8617 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4235, 36, 40, 41syl3anc 1233 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4342breq2d 3999 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
4443adantr 274 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
45 2z 9233 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4645a1i 9 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 2 ∈ ℤ)
47 id 19 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
4846, 47zmulcld 9333 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
4948zcnd 9328 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
5049adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
51 pncan1 8289 . . . . . . . . . . . . 13 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5250, 51syl 14 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5352oveq1d 5866 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
54 2cnd 8944 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
5538a1i 9 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 # 0)
5635, 54, 55divcanap3d 8705 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((2 · 𝑛) / 2) = 𝑛)
5756adantr 274 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) / 2) = 𝑛)
5853, 57eqtrd 2203 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
5958breq2d 3999 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀𝑛))
6034, 44, 593bitr4d 219 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)))
61 oveq1 5858 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
6261breq2d 3999 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2)))
63 oveq1 5858 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1))
6463oveq1d 5866 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) / 2))
6564breq2d 3999 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
6662, 65bibi12d 234 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6760, 66syl5ibcom 154 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6867ex 114 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6968adantl 275 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7069com23 78 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7170rexlimdva 2587 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
721, 71sylbid 149 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
73723imp 1188 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3987  (class class class)co 5851  cc 7765  cr 7766  0cc0 7767  1c1 7768   + caddc 7770   · cmul 7772   < clt 7947  cle 7948  cmin 8083   # cap 8493   / cdiv 8582  2c2 8922  cz 9205  cdvds 11742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-n0 9129  df-z 9206  df-dvds 11743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator