ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle GIF version

Theorem ltoddhalfle 12412
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))

Proof of Theorem ltoddhalfle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 12392 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 halfre 9332 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ
32a1i 9 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1 / 2) ∈ ℝ)
4 1red 8169 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 1 ∈ ℝ)
5 zre 9458 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
63, 4, 53jca 1201 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
76adantr 276 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
8 halflt1 9336 . . . . . . . . . . . . 13 (1 / 2) < 1
9 axltadd 8224 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1 → (𝑛 + (1 / 2)) < (𝑛 + 1)))
107, 8, 9mpisyl 1489 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1))
11 zre 9458 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantl 277 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
135, 3readdcld 8184 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈ ℝ)
1413adantr 276 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈ ℝ)
15 peano2z 9490 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℤ)
1615zred 9577 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℝ)
1716adantr 276 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
18 lttr 8228 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
1912, 14, 17, 18syl3anc 1271 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
2010, 19mpan2d 428 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1)))
21 zleltp1 9510 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2221ancoms 268 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2320, 22sylibrd 169 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀𝑛))
24 halfgt0 9334 . . . . . . . . . . . 12 0 < (1 / 2)
253, 5jca 306 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
2625adantr 276 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
27 ltaddpos 8607 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2826, 27syl 14 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2924, 28mpbii 148 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2)))
305adantr 276 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℝ)
31 lelttr 8243 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3212, 30, 14, 31syl3anc 1271 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3329, 32mpan2d 428 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + (1 / 2))))
3423, 33impbid 129 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀𝑛))
35 zcn 9459 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
36 1cnd 8170 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 1 ∈ ℂ)
37 2cn 9189 . . . . . . . . . . . . . 14 2 ∈ ℂ
38 2ap0 9211 . . . . . . . . . . . . . 14 2 # 0
3937, 38pm3.2i 272 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 # 0)
4039a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
41 muldivdirap 8862 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4235, 36, 40, 41syl3anc 1271 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4342breq2d 4095 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
4443adantr 276 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
45 2z 9482 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4645a1i 9 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 2 ∈ ℤ)
47 id 19 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
4846, 47zmulcld 9583 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
4948zcnd 9578 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
5049adantr 276 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
51 pncan1 8531 . . . . . . . . . . . . 13 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5250, 51syl 14 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5352oveq1d 6022 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
54 2cnd 9191 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
5538a1i 9 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 # 0)
5635, 54, 55divcanap3d 8950 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((2 · 𝑛) / 2) = 𝑛)
5756adantr 276 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) / 2) = 𝑛)
5853, 57eqtrd 2262 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
5958breq2d 4095 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀𝑛))
6034, 44, 593bitr4d 220 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)))
61 oveq1 6014 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
6261breq2d 4095 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2)))
63 oveq1 6014 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1))
6463oveq1d 6022 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) / 2))
6564breq2d 4095 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
6662, 65bibi12d 235 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6760, 66syl5ibcom 155 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6867ex 115 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6968adantl 277 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7069com23 78 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7170rexlimdva 2648 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
721, 71sylbid 150 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
73723imp 1217 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cle 8190  cmin 8325   # cap 8736   / cdiv 8827  2c2 9169  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-dvds 12307
This theorem is referenced by:  gausslemma2dlem1a  15745
  Copyright terms: Public domain W3C validator