ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltoddhalfle GIF version

Theorem ltoddhalfle 11852
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))

Proof of Theorem ltoddhalfle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11832 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 halfre 9091 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ
32a1i 9 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1 / 2) ∈ ℝ)
4 1red 7935 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 1 ∈ ℝ)
5 zre 9216 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
63, 4, 53jca 1172 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
76adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
8 halflt1 9095 . . . . . . . . . . . . 13 (1 / 2) < 1
9 axltadd 7989 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1 → (𝑛 + (1 / 2)) < (𝑛 + 1)))
107, 8, 9mpisyl 1439 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1))
11 zre 9216 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantl 275 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
135, 3readdcld 7949 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈ ℝ)
1413adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈ ℝ)
15 peano2z 9248 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℤ)
1615zred 9334 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℝ)
1716adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
18 lttr 7993 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
1912, 14, 17, 18syl3anc 1233 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
2010, 19mpan2d 426 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1)))
21 zleltp1 9267 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2221ancoms 266 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2320, 22sylibrd 168 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀𝑛))
24 halfgt0 9093 . . . . . . . . . . . 12 0 < (1 / 2)
253, 5jca 304 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
2625adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
27 ltaddpos 8371 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2826, 27syl 14 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2924, 28mpbii 147 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2)))
305adantr 274 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℝ)
31 lelttr 8008 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3212, 30, 14, 31syl3anc 1233 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3329, 32mpan2d 426 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + (1 / 2))))
3423, 33impbid 128 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀𝑛))
35 zcn 9217 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
36 1cnd 7936 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 1 ∈ ℂ)
37 2cn 8949 . . . . . . . . . . . . . 14 2 ∈ ℂ
38 2ap0 8971 . . . . . . . . . . . . . 14 2 # 0
3937, 38pm3.2i 270 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 # 0)
4039a1i 9 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
41 muldivdirap 8624 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4235, 36, 40, 41syl3anc 1233 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4342breq2d 4001 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
4443adantr 274 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
45 2z 9240 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4645a1i 9 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 2 ∈ ℤ)
47 id 19 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
4846, 47zmulcld 9340 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
4948zcnd 9335 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
5049adantr 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
51 pncan1 8296 . . . . . . . . . . . . 13 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5250, 51syl 14 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5352oveq1d 5868 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
54 2cnd 8951 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
5538a1i 9 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 # 0)
5635, 54, 55divcanap3d 8712 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((2 · 𝑛) / 2) = 𝑛)
5756adantr 274 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) / 2) = 𝑛)
5853, 57eqtrd 2203 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
5958breq2d 4001 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀𝑛))
6034, 44, 593bitr4d 219 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)))
61 oveq1 5860 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
6261breq2d 4001 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2)))
63 oveq1 5860 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1))
6463oveq1d 5868 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) / 2))
6564breq2d 4001 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
6662, 65bibi12d 234 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6760, 66syl5ibcom 154 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6867ex 114 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6968adantl 275 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7069com23 78 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7170rexlimdva 2587 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
721, 71sylbid 149 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
73723imp 1188 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  2c2 8929  cz 9212  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-dvds 11750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator