| Step | Hyp | Ref
 | Expression | 
| 1 |   | odd2np1 12038 | 
. . 3
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔
∃𝑛 ∈ ℤ ((2
· 𝑛) + 1) = 𝑁)) | 
| 2 |   | halfre 9204 | 
. . . . . . . . . . . . . . . 16
⊢ (1 / 2)
∈ ℝ | 
| 3 | 2 | a1i 9 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (1 / 2)
∈ ℝ) | 
| 4 |   | 1red 8041 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 1 ∈
ℝ) | 
| 5 |   | zre 9330 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) | 
| 6 | 3, 4, 5 | 3jca 1179 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → ((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ)) | 
| 7 | 6 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ)) | 
| 8 |   | halflt1 9208 | 
. . . . . . . . . . . . 13
⊢ (1 / 2)
< 1 | 
| 9 |   | axltadd 8096 | 
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1
→ (𝑛 + (1 / 2)) <
(𝑛 + 1))) | 
| 10 | 7, 8, 9 | mpisyl 1457 | 
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1)) | 
| 11 |   | zre 9330 | 
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) | 
| 12 | 11 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈
ℝ) | 
| 13 | 5, 3 | readdcld 8056 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈
ℝ) | 
| 14 | 13 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈
ℝ) | 
| 15 |   | peano2z 9362 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (𝑛 + 1) ∈
ℤ) | 
| 16 | 15 | zred 9448 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → (𝑛 + 1) ∈
ℝ) | 
| 17 | 16 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈
ℝ) | 
| 18 |   | lttr 8100 | 
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧
(𝑛 + 1) ∈ ℝ)
→ ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1))) | 
| 19 | 12, 14, 17, 18 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1))) | 
| 20 | 10, 19 | mpan2d 428 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1))) | 
| 21 |   | zleltp1 9381 | 
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ≤ 𝑛 ↔ 𝑀 < (𝑛 + 1))) | 
| 22 | 21 | ancoms 268 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑛 ↔ 𝑀 < (𝑛 + 1))) | 
| 23 | 20, 22 | sylibrd 169 | 
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 ≤ 𝑛)) | 
| 24 |   | halfgt0 9206 | 
. . . . . . . . . . . 12
⊢ 0 < (1
/ 2) | 
| 25 | 3, 5 | jca 306 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → ((1 / 2)
∈ ℝ ∧ 𝑛
∈ ℝ)) | 
| 26 | 25 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2)
∈ ℝ ∧ 𝑛
∈ ℝ)) | 
| 27 |   | ltaddpos 8479 | 
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 𝑛
∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2)))) | 
| 28 | 26, 27 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 <
(1 / 2) ↔ 𝑛 <
(𝑛 + (1 /
2)))) | 
| 29 | 24, 28 | mpbii 148 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2))) | 
| 30 | 5 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈
ℝ) | 
| 31 |   | lelttr 8115 | 
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ)
→ ((𝑀 ≤ 𝑛 ∧ 𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2)))) | 
| 32 | 12, 30, 14, 31 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 ≤ 𝑛 ∧ 𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2)))) | 
| 33 | 29, 32 | mpan2d 428 | 
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑛 → 𝑀 < (𝑛 + (1 / 2)))) | 
| 34 | 23, 33 | impbid 129 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀 ≤ 𝑛)) | 
| 35 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) | 
| 36 |   | 1cnd 8042 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → 1 ∈
ℂ) | 
| 37 |   | 2cn 9061 | 
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ | 
| 38 |   | 2ap0 9083 | 
. . . . . . . . . . . . . 14
⊢ 2 #
0 | 
| 39 | 37, 38 | pm3.2i 272 | 
. . . . . . . . . . . . 13
⊢ (2 ∈
ℂ ∧ 2 # 0) | 
| 40 | 39 | a1i 9 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → (2 ∈
ℂ ∧ 2 # 0)) | 
| 41 |   | muldivdirap 8734 | 
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2))) | 
| 42 | 35, 36, 40, 41 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (((2
· 𝑛) + 1) / 2) =
(𝑛 + (1 /
2))) | 
| 43 | 42 | breq2d 4045 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2)))) | 
| 44 | 43 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2)))) | 
| 45 |   | 2z 9354 | 
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℤ | 
| 46 | 45 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 2 ∈
ℤ) | 
| 47 |   | id 19 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℤ) | 
| 48 | 46, 47 | zmulcld 9454 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → (2
· 𝑛) ∈
ℤ) | 
| 49 | 48 | zcnd 9449 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → (2
· 𝑛) ∈
ℂ) | 
| 50 | 49 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2
· 𝑛) ∈
ℂ) | 
| 51 |   | pncan1 8403 | 
. . . . . . . . . . . . 13
⊢ ((2
· 𝑛) ∈ ℂ
→ (((2 · 𝑛) +
1) − 1) = (2 · 𝑛)) | 
| 52 | 50, 51 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2
· 𝑛) + 1) − 1)
= (2 · 𝑛)) | 
| 53 | 52 | oveq1d 5937 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) − 1)
/ 2) = ((2 · 𝑛) /
2)) | 
| 54 |   | 2cnd 9063 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → 2 ∈
ℂ) | 
| 55 | 38 | a1i 9 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → 2 #
0) | 
| 56 | 35, 54, 55 | divcanap3d 8822 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ → ((2
· 𝑛) / 2) = 𝑛) | 
| 57 | 56 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2
· 𝑛) / 2) = 𝑛) | 
| 58 | 53, 57 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2
· 𝑛) + 1) − 1)
/ 2) = 𝑛) | 
| 59 | 58 | breq2d 4045 | 
. . . . . . . . 9
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔
𝑀 ≤ 𝑛)) | 
| 60 | 34, 44, 59 | 3bitr4d 220 | 
. . . . . . . 8
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) /
2))) | 
| 61 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2)) | 
| 62 | 61 | breq2d 4045 | 
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2))) | 
| 63 |   | oveq1 5929 | 
. . . . . . . . . . 11
⊢ (((2
· 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1)) | 
| 64 | 63 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (((2
· 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) /
2)) | 
| 65 | 64 | breq2d 4045 | 
. . . . . . . . 9
⊢ (((2
· 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) | 
| 66 | 62, 65 | bibi12d 235 | 
. . . . . . . 8
⊢ (((2
· 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))) | 
| 67 | 60, 66 | syl5ibcom 155 | 
. . . . . . 7
⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))) | 
| 68 | 67 | ex 115 | 
. . . . . 6
⊢ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) | 
| 69 | 68 | adantl 277 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) | 
| 70 | 69 | com23 78 | 
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2
· 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) | 
| 71 | 70 | rexlimdva 2614 | 
. . 3
⊢ (𝑁 ∈ ℤ →
(∃𝑛 ∈ ℤ
((2 · 𝑛) + 1) =
𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) | 
| 72 | 1, 71 | sylbid 150 | 
. 2
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))) | 
| 73 | 72 | 3imp 1195 | 
1
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) |