Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsni | GIF version |
Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsng 3591 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: elsn2g 3609 nelsn 3611 disjsn2 3639 sssnm 3734 disjxsn 3980 pwntru 4178 opth1 4214 elsuci 4381 ordtri2orexmid 4500 onsucsssucexmid 4504 sosng 4677 ressn 5144 funcnvsn 5233 funinsn 5237 fvconst 5673 fmptap 5675 fmptapd 5676 fvunsng 5679 mposnif 5936 1stconst 6189 2ndconst 6190 reldmtpos 6221 tpostpos 6232 1domsn 6785 ac6sfi 6864 onunsnss 6882 snon0 6901 snexxph 6915 elfi2 6937 supsnti 6970 djuf1olem 7018 eldju2ndl 7037 eldju2ndr 7038 difinfsnlem 7064 pw1on 7182 elreal2 7771 ax1rid 7818 ltxrlt 7964 un0addcl 9147 un0mulcl 9148 elfzonlteqm1 10145 fxnn0nninf 10373 1exp 10484 hashinfuni 10690 hashennnuni 10692 hashprg 10721 zfz1isolemiso 10752 fisumss 11333 sumsnf 11350 fsumsplitsn 11351 fsum2dlemstep 11375 fisumcom2 11379 fprodssdc 11531 fprodunsn 11545 fprod2dlemstep 11563 fprodcom2fi 11567 fprodsplitsn 11574 divalgmod 11864 phi1 12151 dfphi2 12152 nnnn0modprm0 12187 exmidunben 12359 txdis1cn 12918 bj-nntrans 13833 bj-nnelirr 13835 pwtrufal 13877 sssneq 13882 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |