| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | GIF version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3638 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: elsn2g 3656 nelsn 3658 disjsn2 3686 sssnm 3785 disjxsn 4032 pwntru 4233 opth1 4270 elsuci 4439 ordtri2orexmid 4560 onsucsssucexmid 4564 sosng 4737 elrelimasn 5036 ressn 5211 funcnvsn 5304 funinsn 5308 fvconst 5753 fmptap 5755 fmptapd 5756 fvunsng 5759 mposnif 6020 1stconst 6288 2ndconst 6289 reldmtpos 6320 tpostpos 6331 1domsn 6887 ac6sfi 6968 onunsnss 6987 snon0 7010 snexxph 7025 elfi2 7047 supsnti 7080 djuf1olem 7128 eldju2ndl 7147 eldju2ndr 7148 difinfsnlem 7174 pw1on 7311 elreal2 7916 ax1rid 7963 ltxrlt 8111 un0addcl 9301 un0mulcl 9302 elfzonlteqm1 10305 xnn0nnen 10548 fxnn0nninf 10550 seqf1og 10632 1exp 10679 hashinfuni 10888 hashennnuni 10890 hashprg 10919 zfz1isolemiso 10950 fisumss 11576 sumsnf 11593 fsumsplitsn 11594 fsum2dlemstep 11618 fisumcom2 11622 fprodssdc 11774 fprodunsn 11788 fprod2dlemstep 11806 fprodcom2fi 11810 fprodsplitsn 11817 divalgmod 12111 phi1 12414 dfphi2 12415 nnnn0modprm0 12451 exmidunben 12670 gsumress 13099 0nsg 13422 gsumfzsnfd 13553 lsssn0 14004 lspsneq0 14060 txdis1cn 14622 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 plycj 15105 bj-nntrans 15705 bj-nnelirr 15707 pwtrufal 15752 sssneq 15757 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |