| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | GIF version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3647 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sn 3638 |
| This theorem is referenced by: elsn2g 3665 nelsn 3667 disjsn2 3695 sssnm 3794 disjxsn 4041 pwntru 4242 opth1 4279 elsuci 4449 ordtri2orexmid 4570 onsucsssucexmid 4574 sosng 4747 elrelimasn 5047 ressn 5222 funcnvsn 5318 funinsn 5322 funopdmsn 5763 fvconst 5771 fmptap 5773 fmptapd 5774 fvunsng 5777 mposnif 6038 1stconst 6306 2ndconst 6307 reldmtpos 6338 tpostpos 6349 1domsn 6913 ac6sfi 6994 onunsnss 7013 snon0 7036 snexxph 7051 elfi2 7073 supsnti 7106 djuf1olem 7154 eldju2ndl 7173 eldju2ndr 7174 difinfsnlem 7200 pw1on 7337 elreal2 7942 ax1rid 7989 ltxrlt 8137 un0addcl 9327 un0mulcl 9328 elfzonlteqm1 10337 xnn0nnen 10580 fxnn0nninf 10582 seqf1og 10664 1exp 10711 hashinfuni 10920 hashennnuni 10922 hashprg 10951 zfz1isolemiso 10982 fisumss 11674 sumsnf 11691 fsumsplitsn 11692 fsum2dlemstep 11716 fisumcom2 11720 fprodssdc 11872 fprodunsn 11886 fprod2dlemstep 11904 fprodcom2fi 11908 fprodsplitsn 11915 divalgmod 12209 phi1 12512 dfphi2 12513 nnnn0modprm0 12549 exmidunben 12768 gsumress 13198 0nsg 13521 gsumfzsnfd 13652 lsssn0 14103 lspsneq0 14159 txdis1cn 14721 plyaddlem1 15190 plymullem1 15191 plycoeid3 15200 plycj 15204 bj-nntrans 15849 bj-nnelirr 15851 pwtrufal 15896 sssneq 15901 exmidsbthrlem 15923 |
| Copyright terms: Public domain | W3C validator |