| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | GIF version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3653 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sn 3644 |
| This theorem is referenced by: elsn2g 3671 nelsn 3673 disjsn2 3701 sssnm 3803 disjxsn 4052 pwntru 4254 opth1 4293 elsuci 4463 ordtri2orexmid 4584 onsucsssucexmid 4588 sosng 4761 elrelimasn 5062 ressn 5237 funcnvsn 5333 funinsn 5337 funopdmsn 5782 fvconst 5790 fmptap 5792 fmptapd 5793 fvunsng 5796 mposnif 6057 1stconst 6325 2ndconst 6326 reldmtpos 6357 tpostpos 6368 1domsn 6934 ac6sfi 7016 onunsnss 7035 snon0 7058 snexxph 7073 elfi2 7095 supsnti 7128 djuf1olem 7176 eldju2ndl 7195 eldju2ndr 7196 difinfsnlem 7222 pw1m 7365 pw1on 7367 elreal2 7973 ax1rid 8020 ltxrlt 8168 un0addcl 9358 un0mulcl 9359 fzodisjsn 10336 elfzonlteqm1 10371 xnn0nnen 10614 fxnn0nninf 10616 seqf1og 10698 1exp 10745 hashinfuni 10954 hashennnuni 10956 hashprg 10985 zfz1isolemiso 11016 cats1un 11207 fisumss 11788 sumsnf 11805 fsumsplitsn 11806 fsum2dlemstep 11830 fisumcom2 11834 fprodssdc 11986 fprodunsn 12000 fprod2dlemstep 12018 fprodcom2fi 12022 fprodsplitsn 12029 divalgmod 12323 phi1 12626 dfphi2 12627 nnnn0modprm0 12663 exmidunben 12882 gsumress 13312 0nsg 13635 gsumfzsnfd 13766 lsssn0 14217 lspsneq0 14273 txdis1cn 14835 plyaddlem1 15304 plymullem1 15305 plycoeid3 15314 plycj 15318 pw0ss 15764 bj-nntrans 16056 bj-nnelirr 16058 pwtrufal 16106 sssneq 16111 exmidsbthrlem 16133 |
| Copyright terms: Public domain | W3C validator |