| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | GIF version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3638 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: elsn2g 3656 nelsn 3658 disjsn2 3686 sssnm 3785 disjxsn 4032 pwntru 4233 opth1 4270 elsuci 4439 ordtri2orexmid 4560 onsucsssucexmid 4564 sosng 4737 elrelimasn 5036 ressn 5211 funcnvsn 5304 funinsn 5308 fvconst 5751 fmptap 5753 fmptapd 5754 fvunsng 5757 mposnif 6017 1stconst 6280 2ndconst 6281 reldmtpos 6312 tpostpos 6323 1domsn 6879 ac6sfi 6960 onunsnss 6979 snon0 7002 snexxph 7017 elfi2 7039 supsnti 7072 djuf1olem 7120 eldju2ndl 7139 eldju2ndr 7140 difinfsnlem 7166 pw1on 7295 elreal2 7899 ax1rid 7946 ltxrlt 8094 un0addcl 9284 un0mulcl 9285 elfzonlteqm1 10288 xnn0nnen 10531 fxnn0nninf 10533 seqf1og 10615 1exp 10662 hashinfuni 10871 hashennnuni 10873 hashprg 10902 zfz1isolemiso 10933 fisumss 11559 sumsnf 11576 fsumsplitsn 11577 fsum2dlemstep 11601 fisumcom2 11605 fprodssdc 11757 fprodunsn 11771 fprod2dlemstep 11789 fprodcom2fi 11793 fprodsplitsn 11800 divalgmod 12094 phi1 12397 dfphi2 12398 nnnn0modprm0 12434 exmidunben 12653 gsumress 13048 0nsg 13354 gsumfzsnfd 13485 lsssn0 13936 lspsneq0 13992 txdis1cn 14524 plyaddlem1 14993 plymullem1 14994 plycoeid3 15003 plycj 15007 bj-nntrans 15607 bj-nnelirr 15609 pwtrufal 15652 sssneq 15656 exmidsbthrlem 15676 |
| Copyright terms: Public domain | W3C validator |