![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsni | GIF version |
Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsng 3633 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: elsn2g 3651 nelsn 3653 disjsn2 3681 sssnm 3780 disjxsn 4027 pwntru 4228 opth1 4265 elsuci 4434 ordtri2orexmid 4555 onsucsssucexmid 4559 sosng 4732 elrelimasn 5031 ressn 5206 funcnvsn 5299 funinsn 5303 fvconst 5746 fmptap 5748 fmptapd 5749 fvunsng 5752 mposnif 6012 1stconst 6274 2ndconst 6275 reldmtpos 6306 tpostpos 6317 1domsn 6873 ac6sfi 6954 onunsnss 6973 snon0 6994 snexxph 7009 elfi2 7031 supsnti 7064 djuf1olem 7112 eldju2ndl 7131 eldju2ndr 7132 difinfsnlem 7158 pw1on 7286 elreal2 7890 ax1rid 7937 ltxrlt 8085 un0addcl 9273 un0mulcl 9274 elfzonlteqm1 10277 xnn0nnen 10508 fxnn0nninf 10510 seqf1og 10592 1exp 10639 hashinfuni 10848 hashennnuni 10850 hashprg 10879 zfz1isolemiso 10910 fisumss 11535 sumsnf 11552 fsumsplitsn 11553 fsum2dlemstep 11577 fisumcom2 11581 fprodssdc 11733 fprodunsn 11747 fprod2dlemstep 11765 fprodcom2fi 11769 fprodsplitsn 11776 divalgmod 12068 phi1 12357 dfphi2 12358 nnnn0modprm0 12393 exmidunben 12583 gsumress 12978 0nsg 13284 gsumfzsnfd 13415 lsssn0 13866 lspsneq0 13922 txdis1cn 14446 plyaddlem1 14893 plymullem1 14894 bj-nntrans 15443 bj-nnelirr 15445 pwtrufal 15488 sssneq 15492 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |