| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsni | GIF version | ||
| Description: There is only one element in a singleton. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsni | ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsng 3681 | . 2 ⊢ (𝐴 ∈ {𝐵} → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: elsn2g 3699 nelsn 3701 disjsn2 3729 sssnm 3831 disjxsn 4080 pwntru 4282 opth1 4321 elsuci 4493 ordtri2orexmid 4614 onsucsssucexmid 4618 sosng 4791 elrelimasn 5093 ressn 5268 funcnvsn 5365 funinsn 5369 funopdmsn 5818 fvconst 5826 fmptap 5828 fmptapd 5829 fvunsng 5832 mposnif 6097 1stconst 6365 2ndconst 6366 reldmtpos 6397 tpostpos 6408 1domsn 6974 ac6sfi 7056 onunsnss 7075 snon0 7098 snexxph 7113 elfi2 7135 supsnti 7168 djuf1olem 7216 eldju2ndl 7235 eldju2ndr 7236 difinfsnlem 7262 pw1m 7405 pw1on 7407 elreal2 8013 ax1rid 8060 ltxrlt 8208 un0addcl 9398 un0mulcl 9399 fzodisjsn 10376 elfzonlteqm1 10411 xnn0nnen 10654 fxnn0nninf 10656 seqf1og 10738 1exp 10785 hashinfuni 10994 hashennnuni 10996 hashprg 11025 zfz1isolemiso 11056 cats1un 11248 fisumss 11898 sumsnf 11915 fsumsplitsn 11916 fsum2dlemstep 11940 fisumcom2 11944 fprodssdc 12096 fprodunsn 12110 fprod2dlemstep 12128 fprodcom2fi 12132 fprodsplitsn 12139 divalgmod 12433 phi1 12736 dfphi2 12737 nnnn0modprm0 12773 exmidunben 12992 bassetsnn 13084 gsumress 13423 0nsg 13746 gsumfzsnfd 13877 lsssn0 14328 lspsneq0 14384 txdis1cn 14946 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 plycj 15429 pw0ss 15877 bj-nntrans 16272 bj-nnelirr 16274 pwtrufal 16322 sssneq 16327 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |