| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstmpo | GIF version | ||
| Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.) |
| Ref | Expression |
|---|---|
| fconstmpo | ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 4763 | . 2 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) | |
| 2 | eqidd 2230 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐶) | |
| 3 | 2 | mpompt 6087 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 4 | 1, 3 | eqtri 2250 | 1 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 {csn 3666 〈cop 3669 ↦ cmpt 4144 × cxp 4714 ∈ cmpo 5996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3966 df-opab 4145 df-mpt 4146 df-xp 4722 df-rel 4723 df-oprab 5998 df-mpo 5999 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |