Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconstmpo | GIF version |
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
fconstmpo | ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 4633 | . 2 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) | |
2 | eqidd 2158 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐶) | |
3 | 2 | mpompt 5913 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
4 | 1, 3 | eqtri 2178 | 1 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 {csn 3560 〈cop 3563 ↦ cmpt 4025 × cxp 4584 ∈ cmpo 5826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-iun 3851 df-opab 4026 df-mpt 4027 df-xp 4592 df-rel 4593 df-oprab 5828 df-mpo 5829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |