ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo GIF version

Theorem fconstmpo 6090
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fconstmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4763 . 2 ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
2 eqidd 2230 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐶)
32mpompt 6087 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
41, 3eqtri 2250 1 ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  {csn 3666  cop 3669  cmpt 4144   × cxp 4714  cmpo 5996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iun 3966  df-opab 4145  df-mpt 4146  df-xp 4722  df-rel 4723  df-oprab 5998  df-mpo 5999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator