ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpo GIF version

Theorem fconstmpo 6014
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpo ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fconstmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4707 . 2 ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
2 eqidd 2194 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐶)
32mpompt 6011 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
41, 3eqtri 2214 1 ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {csn 3619  cop 3622  cmpt 4091   × cxp 4658  cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-iun 3915  df-opab 4092  df-mpt 4093  df-xp 4666  df-rel 4667  df-oprab 5923  df-mpo 5924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator