Step | Hyp | Ref
| Expression |
1 | | fmptcof.1 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) |
2 | | nfcsb1v 3078 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑅 |
3 | 2 | nfel1 2319 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑅 ∈ 𝐵 |
4 | | csbeq1a 3054 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → 𝑅 = ⦋𝑧 / 𝑥⦌𝑅) |
5 | 4 | eleq1d 2235 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑅 ∈ 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝑅 ∈ 𝐵)) |
6 | 3, 5 | rspc 2824 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ⦋𝑧 / 𝑥⦌𝑅 ∈ 𝐵)) |
7 | 1, 6 | mpan9 279 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑥⦌𝑅 ∈ 𝐵) |
8 | | fmptcof.2 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
9 | | nfcv 2308 |
. . . . . 6
⊢
Ⅎ𝑧𝑅 |
10 | 9, 2, 4 | cbvmpt 4077 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑧 ∈ 𝐴 ↦ ⦋𝑧 / 𝑥⦌𝑅) |
11 | 8, 10 | eqtrdi 2215 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ 𝐴 ↦ ⦋𝑧 / 𝑥⦌𝑅)) |
12 | | fmptcof.3 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
13 | | nfcv 2308 |
. . . . . 6
⊢
Ⅎ𝑤𝑆 |
14 | | nfcsb1v 3078 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑤 / 𝑦⦌𝑆 |
15 | | csbeq1a 3054 |
. . . . . 6
⊢ (𝑦 = 𝑤 → 𝑆 = ⦋𝑤 / 𝑦⦌𝑆) |
16 | 13, 14, 15 | cbvmpt 4077 |
. . . . 5
⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑤 ∈ 𝐵 ↦ ⦋𝑤 / 𝑦⦌𝑆) |
17 | 12, 16 | eqtrdi 2215 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐵 ↦ ⦋𝑤 / 𝑦⦌𝑆)) |
18 | | csbeq1 3048 |
. . . 4
⊢ (𝑤 = ⦋𝑧 / 𝑥⦌𝑅 → ⦋𝑤 / 𝑦⦌𝑆 = ⦋⦋𝑧 / 𝑥⦌𝑅 / 𝑦⦌𝑆) |
19 | 7, 11, 17, 18 | fmptco 5651 |
. . 3
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑧 ∈ 𝐴 ↦ ⦋⦋𝑧 / 𝑥⦌𝑅 / 𝑦⦌𝑆)) |
20 | | nfcv 2308 |
. . . 4
⊢
Ⅎ𝑧⦋𝑅 / 𝑦⦌𝑆 |
21 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑥𝑆 |
22 | 2, 21 | nfcsb 3082 |
. . . 4
⊢
Ⅎ𝑥⦋⦋𝑧 / 𝑥⦌𝑅 / 𝑦⦌𝑆 |
23 | 4 | csbeq1d 3052 |
. . . 4
⊢ (𝑥 = 𝑧 → ⦋𝑅 / 𝑦⦌𝑆 = ⦋⦋𝑧 / 𝑥⦌𝑅 / 𝑦⦌𝑆) |
24 | 20, 22, 23 | cbvmpt 4077 |
. . 3
⊢ (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆) = (𝑧 ∈ 𝐴 ↦ ⦋⦋𝑧 / 𝑥⦌𝑅 / 𝑦⦌𝑆) |
25 | 19, 24 | eqtr4di 2217 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
26 | | eqid 2165 |
. . . 4
⊢ 𝐴 = 𝐴 |
27 | | nfcvd 2309 |
. . . . . 6
⊢ (𝑅 ∈ 𝐵 → Ⅎ𝑦𝑇) |
28 | | fmptcof.4 |
. . . . . 6
⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
29 | 27, 28 | csbiegf 3088 |
. . . . 5
⊢ (𝑅 ∈ 𝐵 → ⦋𝑅 / 𝑦⦌𝑆 = 𝑇) |
30 | 29 | ralimi 2529 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝑅 ∈ 𝐵 → ∀𝑥 ∈ 𝐴 ⦋𝑅 / 𝑦⦌𝑆 = 𝑇) |
31 | | mpteq12 4065 |
. . . 4
⊢ ((𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⦋𝑅 / 𝑦⦌𝑆 = 𝑇) → (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
32 | 26, 30, 31 | sylancr 411 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝑅 ∈ 𝐵 → (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
33 | 1, 32 | syl 14 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
34 | 25, 33 | eqtrd 2198 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |