| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | cbvmpt 4179 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ↦ cmpt 4145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-mpt 4147 |
| This theorem is referenced by: fnmptfvd 5741 frecsuc 6559 pw2f1odclem 7003 xpmapen 7019 omp1eom 7270 fodjuomni 7324 fodjumkv 7335 nninfwlporlemd 7347 nninfwlpor 7349 nninfwlpoim 7354 nninfinfwlpo 7355 caucvgsrlembnd 7996 negiso 9110 infrenegsupex 9797 frec2uzsucd 10631 frecuzrdgdom 10648 frecuzrdgfun 10650 frecuzrdgsuct 10654 0tonninf 10670 1tonninf 10671 seq3f1oleml 10746 seq3f1o 10747 hashfz1 11013 xrnegiso 11781 infxrnegsupex 11782 climcvg1n 11869 summodc 11902 zsumdc 11903 fsum3 11906 fsumadd 11925 prodmodc 12097 zproddc 12098 fprodseq 12102 phimullem 12755 eulerthlemh 12761 eulerthlemth 12762 ennnfonelemnn0 13001 ennnfonelemr 13002 ctinfom 13007 grplactcnv 13643 expcn 15251 cdivcncfap 15286 expcncf 15291 ivthdich 15335 plyadd 15433 plymul 15434 plyco 15441 plycjlemc 15442 plycj 15443 dvply2g 15448 lgseisenlem3 15759 2sqlem1 15801 bj-charfunbi 16198 subctctexmid 16395 nninfsellemqall 16411 nninfomni 16415 nninffeq 16416 exmidsbthrlem 16420 exmidsbthr 16421 isomninn 16429 iswomninn 16448 ismkvnn 16451 |
| Copyright terms: Public domain | W3C validator |