| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | cbvmpt 4144 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ↦ cmpt 4110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 df-op 3644 df-opab 4111 df-mpt 4112 |
| This theorem is referenced by: fnmptfvd 5694 frecsuc 6503 pw2f1odclem 6943 xpmapen 6959 omp1eom 7209 fodjuomni 7263 fodjumkv 7274 nninfwlporlemd 7286 nninfwlpor 7288 nninfwlpoim 7293 nninfinfwlpo 7294 caucvgsrlembnd 7927 negiso 9041 infrenegsupex 9728 frec2uzsucd 10559 frecuzrdgdom 10576 frecuzrdgfun 10578 frecuzrdgsuct 10582 0tonninf 10598 1tonninf 10599 seq3f1oleml 10674 seq3f1o 10675 hashfz1 10941 xrnegiso 11623 infxrnegsupex 11624 climcvg1n 11711 summodc 11744 zsumdc 11745 fsum3 11748 fsumadd 11767 prodmodc 11939 zproddc 11940 fprodseq 11944 phimullem 12597 eulerthlemh 12603 eulerthlemth 12604 ennnfonelemnn0 12843 ennnfonelemr 12844 ctinfom 12849 grplactcnv 13484 expcn 15091 cdivcncfap 15126 expcncf 15131 ivthdich 15175 plyadd 15273 plymul 15274 plyco 15281 plycjlemc 15282 plycj 15283 dvply2g 15288 lgseisenlem3 15599 2sqlem1 15641 bj-charfunbi 15861 subctctexmid 16052 nninfsellemqall 16067 nninfomni 16071 nninffeq 16072 exmidsbthrlem 16076 exmidsbthr 16077 isomninn 16085 iswomninn 16104 ismkvnn 16107 |
| Copyright terms: Public domain | W3C validator |