| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | cbvmpt 4129 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: fnmptfvd 5669 frecsuc 6474 pw2f1odclem 6904 xpmapen 6920 omp1eom 7170 fodjuomni 7224 fodjumkv 7235 nninfwlporlemd 7247 nninfwlpor 7249 nninfwlpoim 7253 caucvgsrlembnd 7885 negiso 8999 infrenegsupex 9685 frec2uzsucd 10510 frecuzrdgdom 10527 frecuzrdgfun 10529 frecuzrdgsuct 10533 0tonninf 10549 1tonninf 10550 seq3f1oleml 10625 seq3f1o 10626 hashfz1 10892 xrnegiso 11444 infxrnegsupex 11445 climcvg1n 11532 summodc 11565 zsumdc 11566 fsum3 11569 fsumadd 11588 prodmodc 11760 zproddc 11761 fprodseq 11765 phimullem 12418 eulerthlemh 12424 eulerthlemth 12425 ennnfonelemnn0 12664 ennnfonelemr 12665 ctinfom 12670 grplactcnv 13304 expcn 14889 cdivcncfap 14924 expcncf 14929 ivthdich 14973 plyadd 15071 plymul 15072 plyco 15079 plycjlemc 15080 plycj 15081 dvply2g 15086 lgseisenlem3 15397 2sqlem1 15439 bj-charfunbi 15541 subctctexmid 15731 nninfsellemqall 15746 nninfomni 15750 nninffeq 15751 exmidsbthrlem 15753 exmidsbthr 15754 isomninn 15762 iswomninn 15781 ismkvnn 15784 |
| Copyright terms: Public domain | W3C validator |