Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
Ref | Expression |
---|---|
cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvmpt 4077 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ↦ cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-mpt 4045 |
This theorem is referenced by: frecsuc 6375 xpmapen 6816 omp1eom 7060 fodjuomni 7113 fodjumkv 7124 caucvgsrlembnd 7742 negiso 8850 infrenegsupex 9532 frec2uzsucd 10336 frecuzrdgdom 10353 frecuzrdgfun 10355 frecuzrdgsuct 10359 0tonninf 10374 1tonninf 10375 seq3f1oleml 10438 seq3f1o 10439 hashfz1 10696 xrnegiso 11203 infxrnegsupex 11204 climcvg1n 11291 summodc 11324 zsumdc 11325 fsum3 11328 fsumadd 11347 prodmodc 11519 zproddc 11520 fprodseq 11524 phimullem 12157 eulerthlemh 12163 eulerthlemth 12164 ennnfonelemnn0 12355 ennnfonelemr 12356 ctinfom 12361 cdivcncfap 13227 expcncf 13232 2sqlem1 13590 bj-charfunbi 13693 subctctexmid 13881 nninfsellemqall 13895 nninfomni 13899 nninffeq 13900 exmidsbthrlem 13901 exmidsbthr 13902 isomninn 13910 iswomninn 13929 ismkvnn 13932 |
Copyright terms: Public domain | W3C validator |