![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
Ref | Expression |
---|---|
cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2319 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvmpt 4100 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ↦ cmpt 4066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-mpt 4068 |
This theorem is referenced by: fnmptfvd 5622 frecsuc 6410 xpmapen 6852 omp1eom 7096 fodjuomni 7149 fodjumkv 7160 nninfwlporlemd 7172 nninfwlpor 7174 nninfwlpoim 7178 caucvgsrlembnd 7802 negiso 8914 infrenegsupex 9596 frec2uzsucd 10403 frecuzrdgdom 10420 frecuzrdgfun 10422 frecuzrdgsuct 10426 0tonninf 10441 1tonninf 10442 seq3f1oleml 10505 seq3f1o 10506 hashfz1 10765 xrnegiso 11272 infxrnegsupex 11273 climcvg1n 11360 summodc 11393 zsumdc 11394 fsum3 11397 fsumadd 11416 prodmodc 11588 zproddc 11589 fprodseq 11593 phimullem 12227 eulerthlemh 12233 eulerthlemth 12234 ennnfonelemnn0 12425 ennnfonelemr 12426 ctinfom 12431 grplactcnv 12977 cdivcncfap 14126 expcncf 14131 2sqlem1 14500 bj-charfunbi 14602 subctctexmid 14789 nninfsellemqall 14803 nninfomni 14807 nninffeq 14808 exmidsbthrlem 14809 exmidsbthr 14810 isomninn 14818 iswomninn 14837 ismkvnn 14840 |
Copyright terms: Public domain | W3C validator |