| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | cbvmpt 4178 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: fnmptfvd 5732 frecsuc 6543 pw2f1odclem 6983 xpmapen 6999 omp1eom 7250 fodjuomni 7304 fodjumkv 7315 nninfwlporlemd 7327 nninfwlpor 7329 nninfwlpoim 7334 nninfinfwlpo 7335 caucvgsrlembnd 7976 negiso 9090 infrenegsupex 9777 frec2uzsucd 10610 frecuzrdgdom 10627 frecuzrdgfun 10629 frecuzrdgsuct 10633 0tonninf 10649 1tonninf 10650 seq3f1oleml 10725 seq3f1o 10726 hashfz1 10992 xrnegiso 11759 infxrnegsupex 11760 climcvg1n 11847 summodc 11880 zsumdc 11881 fsum3 11884 fsumadd 11903 prodmodc 12075 zproddc 12076 fprodseq 12080 phimullem 12733 eulerthlemh 12739 eulerthlemth 12740 ennnfonelemnn0 12979 ennnfonelemr 12980 ctinfom 12985 grplactcnv 13621 expcn 15228 cdivcncfap 15263 expcncf 15268 ivthdich 15312 plyadd 15410 plymul 15411 plyco 15418 plycjlemc 15419 plycj 15420 dvply2g 15425 lgseisenlem3 15736 2sqlem1 15778 bj-charfunbi 16104 subctctexmid 16297 nninfsellemqall 16312 nninfomni 16316 nninffeq 16317 exmidsbthrlem 16321 exmidsbthr 16322 isomninn 16330 iswomninn 16349 ismkvnn 16352 |
| Copyright terms: Public domain | W3C validator |