| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | cbvmpt 4129 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: fnmptfvd 5669 frecsuc 6474 pw2f1odclem 6904 xpmapen 6920 omp1eom 7170 fodjuomni 7224 fodjumkv 7235 nninfwlporlemd 7247 nninfwlpor 7249 nninfwlpoim 7254 nninfinfwlpo 7255 caucvgsrlembnd 7887 negiso 9001 infrenegsupex 9687 frec2uzsucd 10512 frecuzrdgdom 10529 frecuzrdgfun 10531 frecuzrdgsuct 10535 0tonninf 10551 1tonninf 10552 seq3f1oleml 10627 seq3f1o 10628 hashfz1 10894 xrnegiso 11446 infxrnegsupex 11447 climcvg1n 11534 summodc 11567 zsumdc 11568 fsum3 11571 fsumadd 11590 prodmodc 11762 zproddc 11763 fprodseq 11767 phimullem 12420 eulerthlemh 12426 eulerthlemth 12427 ennnfonelemnn0 12666 ennnfonelemr 12667 ctinfom 12672 grplactcnv 13306 expcn 14913 cdivcncfap 14948 expcncf 14953 ivthdich 14997 plyadd 15095 plymul 15096 plyco 15103 plycjlemc 15104 plycj 15105 dvply2g 15110 lgseisenlem3 15421 2sqlem1 15463 bj-charfunbi 15565 subctctexmid 15755 nninfsellemqall 15770 nninfomni 15774 nninffeq 15775 exmidsbthrlem 15779 exmidsbthr 15780 isomninn 15788 iswomninn 15807 ismkvnn 15810 |
| Copyright terms: Public domain | W3C validator |