| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 4109 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 {copab 4103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-opab 4105 |
| This theorem is referenced by: mptv 4140 fconstmpt 4721 xpundi 4730 xpundir 4731 inxp 4811 cnvco 4862 resopab 5002 opabresid 5011 cnvi 5086 cnvun 5087 cnvin 5089 cnvxp 5100 cnvcnv3 5131 coundi 5183 coundir 5184 mptun 5406 fvopab6 5675 cbvoprab1 6016 cbvoprab12 6018 dmoprabss 6026 mpomptx 6035 resoprab 6040 ov6g 6083 dfoprab3s 6275 dfoprab3 6276 dfoprab4 6277 mapsncnv 6781 xpcomco 6920 dmaddpq 7491 dmmulpq 7492 recmulnqg 7503 enq0enq 7543 ltrelxr 8132 ltxr 9896 shftidt2 11085 prdsex 13043 prdsval 13047 prdsbaslemss 13048 releqgg 13498 eqgex 13499 dvdsrzring 14307 lmfval 14606 lmbr 14627 cnmptid 14695 lgsquadlem3 15498 |
| Copyright terms: Public domain | W3C validator |