Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabbii | GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 4048 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 {copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-opab 4044 |
This theorem is referenced by: mptv 4079 fconstmpt 4651 xpundi 4660 xpundir 4661 inxp 4738 cnvco 4789 resopab 4928 opabresid 4937 cnvi 5008 cnvun 5009 cnvin 5011 cnvxp 5022 cnvcnv3 5053 coundi 5105 coundir 5106 mptun 5319 fvopab6 5582 cbvoprab1 5914 cbvoprab12 5916 dmoprabss 5924 mpomptx 5933 resoprab 5938 ov6g 5979 dfoprab3s 6158 dfoprab3 6159 dfoprab4 6160 mapsncnv 6661 xpcomco 6792 dmaddpq 7320 dmmulpq 7321 recmulnqg 7332 enq0enq 7372 ltrelxr 7959 ltxr 9711 shftidt2 10774 lmfval 12842 lmbr 12863 cnmptid 12931 |
Copyright terms: Public domain | W3C validator |