| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 4100 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 {copab 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-opab 4096 |
| This theorem is referenced by: mptv 4131 fconstmpt 4711 xpundi 4720 xpundir 4721 inxp 4801 cnvco 4852 resopab 4991 opabresid 5000 cnvi 5075 cnvun 5076 cnvin 5078 cnvxp 5089 cnvcnv3 5120 coundi 5172 coundir 5173 mptun 5392 fvopab6 5661 cbvoprab1 5998 cbvoprab12 6000 dmoprabss 6008 mpomptx 6017 resoprab 6022 ov6g 6065 dfoprab3s 6257 dfoprab3 6258 dfoprab4 6259 mapsncnv 6763 xpcomco 6894 dmaddpq 7465 dmmulpq 7466 recmulnqg 7477 enq0enq 7517 ltrelxr 8106 ltxr 9869 shftidt2 11016 prdsex 12973 prdsval 12977 prdsbaslemss 12978 releqgg 13428 eqgex 13429 dvdsrzring 14237 lmfval 14536 lmbr 14557 cnmptid 14625 lgsquadlem3 15428 |
| Copyright terms: Public domain | W3C validator |