![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbii | GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 4069 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 {copab 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-opab 4065 |
This theorem is referenced by: mptv 4100 fconstmpt 4673 xpundi 4682 xpundir 4683 inxp 4761 cnvco 4812 resopab 4951 opabresid 4960 cnvi 5033 cnvun 5034 cnvin 5036 cnvxp 5047 cnvcnv3 5078 coundi 5130 coundir 5131 mptun 5347 fvopab6 5612 cbvoprab1 5946 cbvoprab12 5948 dmoprabss 5956 mpomptx 5965 resoprab 5970 ov6g 6011 dfoprab3s 6190 dfoprab3 6191 dfoprab4 6192 mapsncnv 6694 xpcomco 6825 dmaddpq 7377 dmmulpq 7378 recmulnqg 7389 enq0enq 7429 ltrelxr 8017 ltxr 9774 shftidt2 10840 prdsex 12717 releqgg 13078 dvdsrzring 13463 lmfval 13662 lmbr 13683 cnmptid 13751 |
Copyright terms: Public domain | W3C validator |