| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 4118 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 {copab 4112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-opab 4114 |
| This theorem is referenced by: mptv 4149 fconstmpt 4730 xpundi 4739 xpundir 4740 inxp 4820 cnvco 4871 resopab 5012 opabresid 5021 cnvi 5096 cnvun 5097 cnvin 5099 cnvxp 5110 cnvcnv3 5141 coundi 5193 coundir 5194 mptun 5417 fvopab6 5689 cbvoprab1 6030 cbvoprab12 6032 dmoprabss 6040 mpomptx 6049 resoprab 6054 ov6g 6097 dfoprab3s 6289 dfoprab3 6290 dfoprab4 6291 mapsncnv 6795 xpcomco 6936 dmaddpq 7512 dmmulpq 7513 recmulnqg 7524 enq0enq 7564 ltrelxr 8153 ltxr 9917 shftidt2 11218 prdsex 13176 prdsval 13180 prdsbaslemss 13181 releqgg 13631 eqgex 13632 dvdsrzring 14440 lmfval 14739 lmbr 14760 cnmptid 14828 lgsquadlem3 15631 |
| Copyright terms: Public domain | W3C validator |