Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabbii | GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 4055 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 {copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-opab 4051 |
This theorem is referenced by: mptv 4086 fconstmpt 4658 xpundi 4667 xpundir 4668 inxp 4745 cnvco 4796 resopab 4935 opabresid 4944 cnvi 5015 cnvun 5016 cnvin 5018 cnvxp 5029 cnvcnv3 5060 coundi 5112 coundir 5113 mptun 5329 fvopab6 5592 cbvoprab1 5925 cbvoprab12 5927 dmoprabss 5935 mpomptx 5944 resoprab 5949 ov6g 5990 dfoprab3s 6169 dfoprab3 6170 dfoprab4 6171 mapsncnv 6673 xpcomco 6804 dmaddpq 7341 dmmulpq 7342 recmulnqg 7353 enq0enq 7393 ltrelxr 7980 ltxr 9732 shftidt2 10796 lmfval 12986 lmbr 13007 cnmptid 13075 |
Copyright terms: Public domain | W3C validator |