| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 4109 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 {copab 4103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-opab 4105 |
| This theorem is referenced by: mptv 4140 fconstmpt 4720 xpundi 4729 xpundir 4730 inxp 4810 cnvco 4861 resopab 5000 opabresid 5009 cnvi 5084 cnvun 5085 cnvin 5087 cnvxp 5098 cnvcnv3 5129 coundi 5181 coundir 5182 mptun 5401 fvopab6 5670 cbvoprab1 6007 cbvoprab12 6009 dmoprabss 6017 mpomptx 6026 resoprab 6031 ov6g 6074 dfoprab3s 6266 dfoprab3 6267 dfoprab4 6268 mapsncnv 6772 xpcomco 6903 dmaddpq 7474 dmmulpq 7475 recmulnqg 7486 enq0enq 7526 ltrelxr 8115 ltxr 9879 shftidt2 11062 prdsex 13019 prdsval 13023 prdsbaslemss 13024 releqgg 13474 eqgex 13475 dvdsrzring 14283 lmfval 14582 lmbr 14603 cnmptid 14671 lgsquadlem3 15474 |
| Copyright terms: Public domain | W3C validator |