![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbii | GIF version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . 2 ⊢ 𝑧 = 𝑧 | |
2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
4 | 3 | opabbidv 4095 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 {copab 4089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-opab 4091 |
This theorem is referenced by: mptv 4126 fconstmpt 4706 xpundi 4715 xpundir 4716 inxp 4796 cnvco 4847 resopab 4986 opabresid 4995 cnvi 5070 cnvun 5071 cnvin 5073 cnvxp 5084 cnvcnv3 5115 coundi 5167 coundir 5168 mptun 5385 fvopab6 5654 cbvoprab1 5990 cbvoprab12 5992 dmoprabss 6000 mpomptx 6009 resoprab 6014 ov6g 6056 dfoprab3s 6243 dfoprab3 6244 dfoprab4 6245 mapsncnv 6749 xpcomco 6880 dmaddpq 7439 dmmulpq 7440 recmulnqg 7451 enq0enq 7491 ltrelxr 8080 ltxr 9841 shftidt2 10976 prdsex 12880 releqgg 13290 eqgex 13291 dvdsrzring 14091 lmfval 14360 lmbr 14381 cnmptid 14449 |
Copyright terms: Public domain | W3C validator |