| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | GIF version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| opabbii | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ 𝑧 = 𝑧 | |
| 2 | opabbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 4 | 3 | opabbidv 4149 | . 2 ⊢ (𝑧 = 𝑧 → {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 {copab 4143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-opab 4145 |
| This theorem is referenced by: mptv 4180 fconstmpt 4765 xpundi 4774 xpundir 4775 inxp 4855 cnvco 4906 resopab 5048 opabresid 5057 cnvi 5132 cnvun 5133 cnvin 5135 cnvxp 5146 cnvcnv3 5177 coundi 5229 coundir 5230 mptun 5454 fvopab6 5730 cbvoprab1 6075 cbvoprab12 6077 dmoprabss 6085 mpomptx 6094 resoprab 6099 ov6g 6142 dfoprab3s 6334 dfoprab3 6335 dfoprab4 6336 mapsncnv 6840 xpcomco 6981 dmaddpq 7562 dmmulpq 7563 recmulnqg 7574 enq0enq 7614 ltrelxr 8203 ltxr 9967 shftidt2 11338 prdsex 13297 prdsval 13301 prdsbaslemss 13302 releqgg 13752 eqgex 13753 dvdsrzring 14561 lmfval 14860 lmbr 14881 cnmptid 14949 lgsquadlem3 15752 wksfval 16028 |
| Copyright terms: Public domain | W3C validator |