| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmptid | GIF version | ||
| Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| Ref | Expression |
|---|---|
| cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom 1729 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 2 | 1 | opabbii 4111 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 3 | df-id 4340 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 4 | mptv 4141 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4i 2236 | . . . 4 ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
| 6 | 5 | reseq1i 4955 | . . 3 ⊢ ( I ↾ 𝑋) = ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) |
| 7 | ssv 3215 | . . . 4 ⊢ 𝑋 ⊆ V | |
| 8 | resmpt 5007 | . . . 4 ⊢ (𝑋 ⊆ V → ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) |
| 10 | 6, 9 | eqtri 2226 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) |
| 11 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | idcn 14684 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 14 | 10, 13 | eqeltrrid 2293 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 {copab 4104 ↦ cmpt 4105 I cid 4335 ↾ cres 4677 ‘cfv 5271 (class class class)co 5944 TopOnctopon 14482 Cn ccn 14657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-top 14470 df-topon 14483 df-cn 14660 |
| This theorem is referenced by: imasnopn 14771 expcn 15041 |
| Copyright terms: Public domain | W3C validator |