| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmptid | GIF version | ||
| Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| Ref | Expression |
|---|---|
| cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom 1730 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 2 | 1 | opabbii 4122 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 3 | df-id 4353 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 4 | mptv 4152 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4i 2237 | . . . 4 ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
| 6 | 5 | reseq1i 4969 | . . 3 ⊢ ( I ↾ 𝑋) = ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) |
| 7 | ssv 3219 | . . . 4 ⊢ 𝑋 ⊆ V | |
| 8 | resmpt 5021 | . . . 4 ⊢ (𝑋 ⊆ V → ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) |
| 10 | 6, 9 | eqtri 2227 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) |
| 11 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | idcn 14769 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 14 | 10, 13 | eqeltrrid 2294 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 {copab 4115 ↦ cmpt 4116 I cid 4348 ↾ cres 4690 ‘cfv 5285 (class class class)co 5962 TopOnctopon 14567 Cn ccn 14742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-map 6755 df-top 14555 df-topon 14568 df-cn 14745 |
| This theorem is referenced by: imasnopn 14856 expcn 15126 |
| Copyright terms: Public domain | W3C validator |