| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnmptid | GIF version | ||
| Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| Ref | Expression | 
|---|---|
| cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equcom 1720 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 2 | 1 | opabbii 4100 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} | 
| 3 | df-id 4328 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 4 | mptv 4130 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4i 2227 | . . . 4 ⊢ I = (𝑥 ∈ V ↦ 𝑥) | 
| 6 | 5 | reseq1i 4942 | . . 3 ⊢ ( I ↾ 𝑋) = ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) | 
| 7 | ssv 3205 | . . . 4 ⊢ 𝑋 ⊆ V | |
| 8 | resmpt 4994 | . . . 4 ⊢ (𝑋 ⊆ V → ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | 
| 10 | 6, 9 | eqtri 2217 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | 
| 11 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | idcn 14448 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | 
| 14 | 10, 13 | eqeltrrid 2284 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {copab 4093 ↦ cmpt 4094 I cid 4323 ↾ cres 4665 ‘cfv 5258 (class class class)co 5922 TopOnctopon 14246 Cn ccn 14421 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-top 14234 df-topon 14247 df-cn 14424 | 
| This theorem is referenced by: imasnopn 14535 expcn 14805 | 
| Copyright terms: Public domain | W3C validator |