![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmptid | GIF version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
Ref | Expression |
---|---|
cnmptid | β’ (π β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom 1706 | . . . . . 6 β’ (π₯ = π¦ β π¦ = π₯) | |
2 | 1 | opabbii 4072 | . . . . 5 β’ {β¨π₯, π¦β© β£ π₯ = π¦} = {β¨π₯, π¦β© β£ π¦ = π₯} |
3 | df-id 4295 | . . . . 5 β’ I = {β¨π₯, π¦β© β£ π₯ = π¦} | |
4 | mptv 4102 | . . . . 5 β’ (π₯ β V β¦ π₯) = {β¨π₯, π¦β© β£ π¦ = π₯} | |
5 | 2, 3, 4 | 3eqtr4i 2208 | . . . 4 β’ I = (π₯ β V β¦ π₯) |
6 | 5 | reseq1i 4905 | . . 3 β’ ( I βΎ π) = ((π₯ β V β¦ π₯) βΎ π) |
7 | ssv 3179 | . . . 4 β’ π β V | |
8 | resmpt 4957 | . . . 4 β’ (π β V β ((π₯ β V β¦ π₯) βΎ π) = (π₯ β π β¦ π₯)) | |
9 | 7, 8 | ax-mp 5 | . . 3 β’ ((π₯ β V β¦ π₯) βΎ π) = (π₯ β π β¦ π₯) |
10 | 6, 9 | eqtri 2198 | . 2 β’ ( I βΎ π) = (π₯ β π β¦ π₯) |
11 | cnmptid.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
12 | idcn 13797 | . . 3 β’ (π½ β (TopOnβπ) β ( I βΎ π) β (π½ Cn π½)) | |
13 | 11, 12 | syl 14 | . 2 β’ (π β ( I βΎ π) β (π½ Cn π½)) |
14 | 10, 13 | eqeltrrid 2265 | 1 β’ (π β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 β wss 3131 {copab 4065 β¦ cmpt 4066 I cid 4290 βΎ cres 4630 βcfv 5218 (class class class)co 5877 TopOnctopon 13595 Cn ccn 13770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-top 13583 df-topon 13596 df-cn 13773 |
This theorem is referenced by: imasnopn 13884 |
Copyright terms: Public domain | W3C validator |