| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmptid | GIF version | ||
| Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| Ref | Expression |
|---|---|
| cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom 1752 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 2 | 1 | opabbii 4150 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 3 | df-id 4383 | . . . . 5 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 4 | mptv 4180 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4i 2260 | . . . 4 ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
| 6 | 5 | reseq1i 5000 | . . 3 ⊢ ( I ↾ 𝑋) = ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) |
| 7 | ssv 3246 | . . . 4 ⊢ 𝑋 ⊆ V | |
| 8 | resmpt 5052 | . . . 4 ⊢ (𝑋 ⊆ V → ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) |
| 10 | 6, 9 | eqtri 2250 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) |
| 11 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | idcn 14880 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 14 | 10, 13 | eqeltrrid 2317 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 {copab 4143 ↦ cmpt 4144 I cid 4378 ↾ cres 4720 ‘cfv 5317 (class class class)co 6000 TopOnctopon 14678 Cn ccn 14853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-top 14666 df-topon 14679 df-cn 14856 |
| This theorem is referenced by: imasnopn 14967 expcn 15237 |
| Copyright terms: Public domain | W3C validator |