ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn GIF version

Theorem diffisn 6850
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)

Proof of Theorem diffisn
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6718 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 274 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 elex2 2737 . . . . . . . . 9 (𝐵𝐴 → ∃𝑥 𝑥𝐴)
54adantl 275 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑥 𝑥𝐴)
6 fin0 6842 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
76adantr 274 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
85, 7mpbird 166 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ≠ ∅)
98adantr 274 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≠ ∅)
109neneqd 2355 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 = ∅)
11 simplrr 526 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
12 en0 6752 . . . . . . . . 9 (𝑛 ≈ ∅ ↔ 𝑛 = ∅)
1312biimpri 132 . . . . . . . 8 (𝑛 = ∅ → 𝑛 ≈ ∅)
1413adantl 275 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 ≈ ∅)
15 entr 6741 . . . . . . 7 ((𝐴𝑛𝑛 ≈ ∅) → 𝐴 ≈ ∅)
1611, 14, 15syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
17 en0 6752 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
1816, 17sylib 121 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
1910, 18mtand 655 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝑛 = ∅)
20 nn0suc 4575 . . . . . 6 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
2120orcomd 719 . . . . 5 (𝑛 ∈ ω → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2221ad2antrl 482 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2319, 22ecased 1338 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
24 nnfi 6829 . . . . 5 (𝑚 ∈ ω → 𝑚 ∈ Fin)
2524ad2antrl 482 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ Fin)
26 simprl 521 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ ω)
27 simplrr 526 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴𝑛)
28 breq2 3980 . . . . . . 7 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
2928ad2antll 483 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴𝑛𝐴 ≈ suc 𝑚))
3027, 29mpbid 146 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴 ≈ suc 𝑚)
31 simpllr 524 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐵𝐴)
32 dif1en 6836 . . . . 5 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
3326, 30, 31, 32syl3anc 1227 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
34 enfii 6831 . . . 4 ((𝑚 ∈ Fin ∧ (𝐴 ∖ {𝐵}) ≈ 𝑚) → (𝐴 ∖ {𝐵}) ∈ Fin)
3525, 33, 34syl2anc 409 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ∈ Fin)
3623, 35rexlimddv 2586 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐵}) ∈ Fin)
373, 36rexlimddv 2586 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wex 1479  wcel 2135  wne 2334  wrex 2443  cdif 3108  c0 3404  {csn 3570   class class class wbr 3976  suc csuc 4337  ωcom 4561  cen 6695  Fincfn 6697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-er 6492  df-en 6698  df-fin 6700
This theorem is referenced by:  diffifi  6851  zfz1isolemsplit  10737  zfz1isolem1  10739  fsumdifsnconst  11382  fprodeq0g  11565
  Copyright terms: Public domain W3C validator