ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn GIF version

Theorem diffisn 6755
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)

Proof of Theorem diffisn
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6623 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 274 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 elex2 2676 . . . . . . . . 9 (𝐵𝐴 → ∃𝑥 𝑥𝐴)
54adantl 275 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑥 𝑥𝐴)
6 fin0 6747 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
76adantr 274 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
85, 7mpbird 166 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ≠ ∅)
98adantr 274 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≠ ∅)
109neneqd 2306 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 = ∅)
11 simplrr 510 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
12 en0 6657 . . . . . . . . 9 (𝑛 ≈ ∅ ↔ 𝑛 = ∅)
1312biimpri 132 . . . . . . . 8 (𝑛 = ∅ → 𝑛 ≈ ∅)
1413adantl 275 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 ≈ ∅)
15 entr 6646 . . . . . . 7 ((𝐴𝑛𝑛 ≈ ∅) → 𝐴 ≈ ∅)
1611, 14, 15syl2anc 408 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
17 en0 6657 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
1816, 17sylib 121 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
1910, 18mtand 639 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝑛 = ∅)
20 nn0suc 4488 . . . . . 6 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
2120orcomd 703 . . . . 5 (𝑛 ∈ ω → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2221ad2antrl 481 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2319, 22ecased 1312 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
24 nnfi 6734 . . . . 5 (𝑚 ∈ ω → 𝑚 ∈ Fin)
2524ad2antrl 481 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ Fin)
26 simprl 505 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ ω)
27 simplrr 510 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴𝑛)
28 breq2 3903 . . . . . . 7 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
2928ad2antll 482 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴𝑛𝐴 ≈ suc 𝑚))
3027, 29mpbid 146 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴 ≈ suc 𝑚)
31 simpllr 508 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐵𝐴)
32 dif1en 6741 . . . . 5 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
3326, 30, 31, 32syl3anc 1201 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
34 enfii 6736 . . . 4 ((𝑚 ∈ Fin ∧ (𝐴 ∖ {𝐵}) ≈ 𝑚) → (𝐴 ∖ {𝐵}) ∈ Fin)
3525, 33, 34syl2anc 408 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ∈ Fin)
3623, 35rexlimddv 2531 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐵}) ∈ Fin)
373, 36rexlimddv 2531 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 682   = wceq 1316  wex 1453  wcel 1465  wne 2285  wrex 2394  cdif 3038  c0 3333  {csn 3497   class class class wbr 3899  suc csuc 4257  ωcom 4474  cen 6600  Fincfn 6602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-er 6397  df-en 6603  df-fin 6605
This theorem is referenced by:  diffifi  6756  zfz1isolemsplit  10549  zfz1isolem1  10551  fsumdifsnconst  11192
  Copyright terms: Public domain W3C validator