ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn GIF version

Theorem diffisn 6793
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)

Proof of Theorem diffisn
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6661 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 274 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 elex2 2705 . . . . . . . . 9 (𝐵𝐴 → ∃𝑥 𝑥𝐴)
54adantl 275 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑥 𝑥𝐴)
6 fin0 6785 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
76adantr 274 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
85, 7mpbird 166 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ≠ ∅)
98adantr 274 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≠ ∅)
109neneqd 2330 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 = ∅)
11 simplrr 526 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
12 en0 6695 . . . . . . . . 9 (𝑛 ≈ ∅ ↔ 𝑛 = ∅)
1312biimpri 132 . . . . . . . 8 (𝑛 = ∅ → 𝑛 ≈ ∅)
1413adantl 275 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 ≈ ∅)
15 entr 6684 . . . . . . 7 ((𝐴𝑛𝑛 ≈ ∅) → 𝐴 ≈ ∅)
1611, 14, 15syl2anc 409 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
17 en0 6695 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
1816, 17sylib 121 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
1910, 18mtand 655 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝑛 = ∅)
20 nn0suc 4524 . . . . . 6 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
2120orcomd 719 . . . . 5 (𝑛 ∈ ω → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2221ad2antrl 482 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2319, 22ecased 1328 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
24 nnfi 6772 . . . . 5 (𝑚 ∈ ω → 𝑚 ∈ Fin)
2524ad2antrl 482 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ Fin)
26 simprl 521 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ ω)
27 simplrr 526 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴𝑛)
28 breq2 3939 . . . . . . 7 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
2928ad2antll 483 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴𝑛𝐴 ≈ suc 𝑚))
3027, 29mpbid 146 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴 ≈ suc 𝑚)
31 simpllr 524 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐵𝐴)
32 dif1en 6779 . . . . 5 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
3326, 30, 31, 32syl3anc 1217 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
34 enfii 6774 . . . 4 ((𝑚 ∈ Fin ∧ (𝐴 ∖ {𝐵}) ≈ 𝑚) → (𝐴 ∖ {𝐵}) ∈ Fin)
3525, 33, 34syl2anc 409 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ∈ Fin)
3623, 35rexlimddv 2557 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐵}) ∈ Fin)
373, 36rexlimddv 2557 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wex 1469  wcel 1481  wne 2309  wrex 2418  cdif 3071  c0 3366  {csn 3530   class class class wbr 3935  suc csuc 4293  ωcom 4510  cen 6638  Fincfn 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-if 3478  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-iord 4294  df-on 4296  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-er 6435  df-en 6641  df-fin 6643
This theorem is referenced by:  diffifi  6794  zfz1isolemsplit  10611  zfz1isolem1  10613  fsumdifsnconst  11254
  Copyright terms: Public domain W3C validator