ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn GIF version

Theorem diffisn 6922
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)

Proof of Theorem diffisn
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6788 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 276 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑛 ∈ ω 𝐴𝑛)
4 elex2 2768 . . . . . . . . 9 (𝐵𝐴 → ∃𝑥 𝑥𝐴)
54adantl 277 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ∃𝑥 𝑥𝐴)
6 fin0 6914 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
76adantr 276 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
85, 7mpbird 167 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ≠ ∅)
98adantr 276 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴 ≠ ∅)
109neneqd 2381 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 = ∅)
11 simplrr 536 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
12 en0 6822 . . . . . . . . 9 (𝑛 ≈ ∅ ↔ 𝑛 = ∅)
1312biimpri 133 . . . . . . . 8 (𝑛 = ∅ → 𝑛 ≈ ∅)
1413adantl 277 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 ≈ ∅)
15 entr 6811 . . . . . . 7 ((𝐴𝑛𝑛 ≈ ∅) → 𝐴 ≈ ∅)
1611, 14, 15syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
17 en0 6822 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
1816, 17sylib 122 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
1910, 18mtand 666 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝑛 = ∅)
20 nn0suc 4621 . . . . . 6 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
2120orcomd 730 . . . . 5 (𝑛 ∈ ω → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2221ad2antrl 490 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚𝑛 = ∅))
2319, 22ecased 1360 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
24 nnfi 6901 . . . . 5 (𝑚 ∈ ω → 𝑚 ∈ Fin)
2524ad2antrl 490 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ Fin)
26 simprl 529 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ ω)
27 simplrr 536 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴𝑛)
28 breq2 4022 . . . . . . 7 (𝑛 = suc 𝑚 → (𝐴𝑛𝐴 ≈ suc 𝑚))
2928ad2antll 491 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴𝑛𝐴 ≈ suc 𝑚))
3027, 29mpbid 147 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴 ≈ suc 𝑚)
31 simpllr 534 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐵𝐴)
32 dif1en 6908 . . . . 5 ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
3326, 30, 31, 32syl3anc 1249 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ≈ 𝑚)
34 enfii 6903 . . . 4 ((𝑚 ∈ Fin ∧ (𝐴 ∖ {𝐵}) ≈ 𝑚) → (𝐴 ∖ {𝐵}) ∈ Fin)
3525, 33, 34syl2anc 411 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ∈ Fin)
3623, 35rexlimddv 2612 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∖ {𝐵}) ∈ Fin)
373, 36rexlimddv 2612 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2160  wne 2360  wrex 2469  cdif 3141  c0 3437  {csn 3607   class class class wbr 4018  suc csuc 4383  ωcom 4607  cen 6765  Fincfn 6767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-er 6560  df-en 6768  df-fin 6770
This theorem is referenced by:  diffifi  6923  zfz1isolemsplit  10853  zfz1isolem1  10855  fsumdifsnconst  11498  fprodeq0g  11681
  Copyright terms: Public domain W3C validator