| Step | Hyp | Ref
| Expression |
| 1 | | isfi 6820 |
. . . 4
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 2 | 1 | biimpi 120 |
. . 3
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | 2 | adantr 276 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 4 | | elex2 2779 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| 5 | 4 | adantl 277 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → ∃𝑥 𝑥 ∈ 𝐴) |
| 6 | | fin0 6946 |
. . . . . . . . 9
⊢ (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴)) |
| 7 | 6 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴)) |
| 8 | 5, 7 | mpbird 167 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → 𝐴 ≠ ∅) |
| 9 | 8 | adantr 276 |
. . . . . 6
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≠ ∅) |
| 10 | 9 | neneqd 2388 |
. . . . 5
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 = ∅) |
| 11 | | simplrr 536 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ 𝑛) |
| 12 | | en0 6854 |
. . . . . . . . 9
⊢ (𝑛 ≈ ∅ ↔ 𝑛 = ∅) |
| 13 | 12 | biimpri 133 |
. . . . . . . 8
⊢ (𝑛 = ∅ → 𝑛 ≈
∅) |
| 14 | 13 | adantl 277 |
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝑛 ≈ ∅) |
| 15 | | entr 6843 |
. . . . . . 7
⊢ ((𝐴 ≈ 𝑛 ∧ 𝑛 ≈ ∅) → 𝐴 ≈ ∅) |
| 16 | 11, 14, 15 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅) |
| 17 | | en0 6854 |
. . . . . 6
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| 18 | 16, 17 | sylib 122 |
. . . . 5
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅) |
| 19 | 10, 18 | mtand 666 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝑛 = ∅) |
| 20 | | nn0suc 4640 |
. . . . . 6
⊢ (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚)) |
| 21 | 20 | orcomd 730 |
. . . . 5
⊢ (𝑛 ∈ ω →
(∃𝑚 ∈ ω
𝑛 = suc 𝑚 ∨ 𝑛 = ∅)) |
| 22 | 21 | ad2antrl 490 |
. . . 4
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 ∨ 𝑛 = ∅)) |
| 23 | 19, 22 | ecased 1360 |
. . 3
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
| 24 | | nnfi 6933 |
. . . . 5
⊢ (𝑚 ∈ ω → 𝑚 ∈ Fin) |
| 25 | 24 | ad2antrl 490 |
. . . 4
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ Fin) |
| 26 | | simprl 529 |
. . . . 5
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝑚 ∈ ω) |
| 27 | | simplrr 536 |
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴 ≈ 𝑛) |
| 28 | | breq2 4037 |
. . . . . . 7
⊢ (𝑛 = suc 𝑚 → (𝐴 ≈ 𝑛 ↔ 𝐴 ≈ suc 𝑚)) |
| 29 | 28 | ad2antll 491 |
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ≈ 𝑛 ↔ 𝐴 ≈ suc 𝑚)) |
| 30 | 27, 29 | mpbid 147 |
. . . . 5
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐴 ≈ suc 𝑚) |
| 31 | | simpllr 534 |
. . . . 5
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → 𝐵 ∈ 𝐴) |
| 32 | | dif1en 6940 |
. . . . 5
⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ suc 𝑚 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝑚) |
| 33 | 26, 30, 31, 32 | syl3anc 1249 |
. . . 4
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ≈ 𝑚) |
| 34 | | enfii 6935 |
. . . 4
⊢ ((𝑚 ∈ Fin ∧ (𝐴 ∖ {𝐵}) ≈ 𝑚) → (𝐴 ∖ {𝐵}) ∈ Fin) |
| 35 | 25, 33, 34 | syl2anc 411 |
. . 3
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) ∧ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) → (𝐴 ∖ {𝐵}) ∈ Fin) |
| 36 | 23, 35 | rexlimddv 2619 |
. 2
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∖ {𝐵}) ∈ Fin) |
| 37 | 3, 36 | rexlimddv 2619 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin) |