ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqne2sq GIF version

Theorem sqne2sq 12614
Description: The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Assertion
Ref Expression
sqne2sq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))

Proof of Theorem sqne2sq
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4063 . . . . . . 7 (𝑐 = 𝑧 → (2 ∥ 𝑐 ↔ 2 ∥ 𝑧))
21notbid 669 . . . . . 6 (𝑐 = 𝑧 → (¬ 2 ∥ 𝑐 ↔ ¬ 2 ∥ 𝑧))
32cbvrabv 2775 . . . . 5 {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
4 oveq2 5975 . . . . . 6 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
5 oveq2 5975 . . . . . . 7 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
65oveq1d 5982 . . . . . 6 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
74, 6cbvmpov 6048 . . . . 5 (𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
83, 72sqpwodd 12613 . . . 4 (𝐵 ∈ ℕ → ¬ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
98adantl 277 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
103, 7sqpweven 12612 . . . . 5 (𝐴 ∈ ℕ → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))))
1110ad2antrr 488 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))))
12 fveq2 5599 . . . . . . 7 ((𝐴↑2) = (2 · (𝐵↑2)) → ((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)) = ((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))
1312fveq2d 5603 . . . . . 6 ((𝐴↑2) = (2 · (𝐵↑2)) → (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) = (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
1413breq2d 4071 . . . . 5 ((𝐴↑2) = (2 · (𝐵↑2)) → (2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))))
1514adantl 277 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → (2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))))
1611, 15mpbid 147 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
179, 16mtand 667 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴↑2) = (2 · (𝐵↑2)))
1817neqned 2385 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wne 2378  {crab 2490   class class class wbr 4059  ccnv 4692  cfv 5290  (class class class)co 5967  cmpo 5969  2nd c2nd 6248   · cmul 7965  cn 9071  2c2 9122  0cn0 9330  cexp 10720  cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545
This theorem is referenced by:  sqrt2irraplemnn  12616
  Copyright terms: Public domain W3C validator