![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqne2sq | GIF version |
Description: The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
sqne2sq | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3849 | . . . . . . 7 ⊢ (𝑐 = 𝑧 → (2 ∥ 𝑐 ↔ 2 ∥ 𝑧)) | |
2 | 1 | notbid 627 | . . . . . 6 ⊢ (𝑐 = 𝑧 → (¬ 2 ∥ 𝑐 ↔ ¬ 2 ∥ 𝑧)) |
3 | 2 | cbvrabv 2618 | . . . . 5 ⊢ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
4 | oveq2 5660 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥)) | |
5 | oveq2 5660 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦)) | |
6 | 5 | oveq1d 5667 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥)) |
7 | 4, 6 | cbvmpt2v 5728 | . . . . 5 ⊢ (𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
8 | 3, 7 | 2sqpwodd 11428 | . . . 4 ⊢ (𝐵 ∈ ℕ → ¬ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
9 | 8 | adantl 271 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
10 | 3, 7 | sqpweven 11427 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)))) |
11 | 10 | ad2antrr 472 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)))) |
12 | fveq2 5305 | . . . . . . 7 ⊢ ((𝐴↑2) = (2 · (𝐵↑2)) → (◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)) = (◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))) | |
13 | 12 | fveq2d 5309 | . . . . . 6 ⊢ ((𝐴↑2) = (2 · (𝐵↑2)) → (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) = (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
14 | 13 | breq2d 3857 | . . . . 5 ⊢ ((𝐴↑2) = (2 · (𝐵↑2)) → (2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))) |
15 | 14 | adantl 271 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → (2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))) |
16 | 11, 15 | mpbid 145 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
17 | 9, 16 | mtand 626 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴↑2) = (2 · (𝐵↑2))) |
18 | 17 | neqned 2262 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 {crab 2363 class class class wbr 3845 ◡ccnv 4437 ‘cfv 5015 (class class class)co 5652 ↦ cmpt2 5654 2nd c2nd 5910 · cmul 7353 ℕcn 8420 2c2 8471 ℕ0cn0 8671 ↑cexp 9950 ∥ cdvds 11070 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-mulrcl 7442 ax-addcom 7443 ax-mulcom 7444 ax-addass 7445 ax-mulass 7446 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-1rid 7450 ax-0id 7451 ax-rnegex 7452 ax-precex 7453 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-apti 7458 ax-pre-ltadd 7459 ax-pre-mulgt0 7460 ax-pre-mulext 7461 ax-arch 7462 ax-caucvg 7463 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-xor 1312 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-ilim 4196 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-frec 6156 df-1o 6181 df-2o 6182 df-er 6290 df-en 6456 df-sup 6677 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-reap 8050 df-ap 8057 df-div 8138 df-inn 8421 df-2 8479 df-3 8480 df-4 8481 df-n0 8672 df-z 8749 df-uz 9018 df-q 9103 df-rp 9133 df-fz 9423 df-fzo 9550 df-fl 9673 df-mod 9726 df-iseq 9849 df-seq3 9850 df-exp 9951 df-cj 10272 df-re 10273 df-im 10274 df-rsqrt 10427 df-abs 10428 df-dvds 11071 df-gcd 11213 df-prm 11364 |
This theorem is referenced by: sqrt2irraplemnn 11431 |
Copyright terms: Public domain | W3C validator |