![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqne2sq | GIF version |
Description: The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
sqne2sq | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4033 | . . . . . . 7 ⊢ (𝑐 = 𝑧 → (2 ∥ 𝑐 ↔ 2 ∥ 𝑧)) | |
2 | 1 | notbid 668 | . . . . . 6 ⊢ (𝑐 = 𝑧 → (¬ 2 ∥ 𝑐 ↔ ¬ 2 ∥ 𝑧)) |
3 | 2 | cbvrabv 2759 | . . . . 5 ⊢ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
4 | oveq2 5926 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥)) | |
5 | oveq2 5926 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦)) | |
6 | 5 | oveq1d 5933 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥)) |
7 | 4, 6 | cbvmpov 5998 | . . . . 5 ⊢ (𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
8 | 3, 7 | 2sqpwodd 12314 | . . . 4 ⊢ (𝐵 ∈ ℕ → ¬ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
9 | 8 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
10 | 3, 7 | sqpweven 12313 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)))) |
11 | 10 | ad2antrr 488 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)))) |
12 | fveq2 5554 | . . . . . . 7 ⊢ ((𝐴↑2) = (2 · (𝐵↑2)) → (◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)) = (◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))) | |
13 | 12 | fveq2d 5558 | . . . . . 6 ⊢ ((𝐴↑2) = (2 · (𝐵↑2)) → (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) = (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
14 | 13 | breq2d 4041 | . . . . 5 ⊢ ((𝐴↑2) = (2 · (𝐵↑2)) → (2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))) |
15 | 14 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → (2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))) |
16 | 11, 15 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘(◡(𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))) |
17 | 9, 16 | mtand 666 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴↑2) = (2 · (𝐵↑2))) |
18 | 17 | neqned 2371 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 {crab 2476 class class class wbr 4029 ◡ccnv 4658 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 2nd c2nd 6192 · cmul 7877 ℕcn 8982 2c2 9033 ℕ0cn0 9240 ↑cexp 10609 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-2o 6470 df-er 6587 df-en 6795 df-sup 7043 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-dvds 11931 df-gcd 12080 df-prm 12246 |
This theorem is referenced by: sqrt2irraplemnn 12317 |
Copyright terms: Public domain | W3C validator |