Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqne2sq GIF version

Theorem sqne2sq 11861
 Description: The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Assertion
Ref Expression
sqne2sq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))

Proof of Theorem sqne2sq
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . . . . . . 7 (𝑐 = 𝑧 → (2 ∥ 𝑐 ↔ 2 ∥ 𝑧))
21notbid 656 . . . . . 6 (𝑐 = 𝑧 → (¬ 2 ∥ 𝑐 ↔ ¬ 2 ∥ 𝑧))
32cbvrabv 2685 . . . . 5 {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
4 oveq2 5782 . . . . . 6 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
5 oveq2 5782 . . . . . . 7 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
65oveq1d 5789 . . . . . 6 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
74, 6cbvmpov 5851 . . . . 5 (𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
83, 72sqpwodd 11860 . . . 4 (𝐵 ∈ ℕ → ¬ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
98adantl 275 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
103, 7sqpweven 11859 . . . . 5 (𝐴 ∈ ℕ → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))))
1110ad2antrr 479 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))))
12 fveq2 5421 . . . . . . 7 ((𝐴↑2) = (2 · (𝐵↑2)) → ((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2)) = ((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))
1312fveq2d 5425 . . . . . 6 ((𝐴↑2) = (2 · (𝐵↑2)) → (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) = (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
1413breq2d 3941 . . . . 5 ((𝐴↑2) = (2 · (𝐵↑2)) → (2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))))
1514adantl 275 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → (2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(𝐴↑2))) ↔ 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2))))))
1611, 15mpbid 146 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴↑2) = (2 · (𝐵↑2))) → 2 ∥ (2nd ‘((𝑎 ∈ {𝑐 ∈ ℕ ∣ ¬ 2 ∥ 𝑐}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))‘(2 · (𝐵↑2)))))
179, 16mtand 654 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴↑2) = (2 · (𝐵↑2)))
1817neqned 2315 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   ≠ wne 2308  {crab 2420   class class class wbr 3929  ◡ccnv 4538  ‘cfv 5123  (class class class)co 5774   ∈ cmpo 5776  2nd c2nd 6037   · cmul 7632  ℕcn 8727  2c2 8778  ℕ0cn0 8984  ↑cexp 10299   ∥ cdvds 11499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-sup 6871  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fzo 9927  df-fl 10050  df-mod 10103  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-dvds 11500  df-gcd 11642  df-prm 11795 This theorem is referenced by:  sqrt2irraplemnn  11863
 Copyright terms: Public domain W3C validator