ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc GIF version

Theorem ivthinc 14057
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
Assertion
Ref Expression
ivthinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑐)

Proof of Theorem ivthinc
Dummy variables 𝑝 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
4 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
5 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
6 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
7 ivth.8 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
8 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9 ivthinc.i . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
10 eqid 2177 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
11 eqid 2177 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 14056 . . 3 (𝜑 → ∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
13 reurex 2690 . . 3 (∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
1412, 13syl 14 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
15 elioore 9911 . . . . . . . . . 10 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
1615ad2antlr 489 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑐 ∈ ℝ)
1716ltnrd 8068 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑐 < 𝑐)
18 breq1 4006 . . . . . . . . 9 (𝑝 = 𝑐 → (𝑝 < 𝑐𝑐 < 𝑐))
19 simplrl 535 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → ∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐)
20 fveq2 5515 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
2120breq1d 4013 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑐) < 𝑈))
22 ioossicc 9958 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2322sseli 3151 . . . . . . . . . . . 12 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
2423adantl 277 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
2524ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ (𝐴[,]𝐵))
26 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → (𝐹𝑐) < 𝑈)
2721, 25, 26elrabd 2895 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈})
2818, 19, 27rspcdva 2846 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 < 𝑐)
2917, 28mtand 665 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) < 𝑈)
30 breq2 4007 . . . . . . . . 9 (𝑟 = 𝑐 → (𝑐 < 𝑟𝑐 < 𝑐))
31 simplrr 536 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)
3220breq2d 4015 . . . . . . . . . 10 (𝑤 = 𝑐 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑐)))
3324ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ (𝐴[,]𝐵))
34 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑈 < (𝐹𝑐))
3532, 33, 34elrabd 2895 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)})
3630, 31, 35rspcdva 2846 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 < 𝑐)
3717, 36mtand 665 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑈 < (𝐹𝑐))
38 ioran 752 . . . . . . 7 (¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)) ↔ (¬ (𝐹𝑐) < 𝑈 ∧ ¬ 𝑈 < (𝐹𝑐)))
3929, 37, 38sylanbrc 417 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)))
40 fveq2 5515 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4140eleq1d 2246 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
427ralrimiva 2550 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4342adantr 276 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4441, 43, 24rspcdva 2846 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
453adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℝ)
46 reaplt 8544 . . . . . . . 8 (((𝐹𝑐) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4744, 45, 46syl2anc 411 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4847adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4939, 48mtbird 673 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) # 𝑈)
5044recnd 7985 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
5150adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) ∈ ℂ)
523recnd 7985 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
5352ad2antrr 488 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑈 ∈ ℂ)
54 apti 8578 . . . . . 6 (((𝐹𝑐) ∈ ℂ ∧ 𝑈 ∈ ℂ) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5551, 53, 54syl2anc 411 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5649, 55mpbird 167 . . . 4 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) = 𝑈)
5756ex 115 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → (𝐹𝑐) = 𝑈))
5857reximdva 2579 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
5914, 58mpd 13 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457  {crab 2459  wss 3129   class class class wbr 4003  cfv 5216  (class class class)co 5874  cc 7808  cr 7809   < clt 7991   # cap 8537  (,)cioo 9887  [,]cicc 9890  cnccncf 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930  ax-pre-suploc 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-map 6649  df-sup 6982  df-inf 6983  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-ioo 9891  df-icc 9894  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-cncf 13994
This theorem is referenced by:  ivthdec  14058  reeff1olem  14128
  Copyright terms: Public domain W3C validator