ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc GIF version

Theorem ivthinc 14797
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
Assertion
Ref Expression
ivthinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑐)

Proof of Theorem ivthinc
Dummy variables 𝑝 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
4 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
5 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
6 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
7 ivth.8 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
8 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9 ivthinc.i . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
10 eqid 2193 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
11 eqid 2193 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 14796 . . 3 (𝜑 → ∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
13 reurex 2712 . . 3 (∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
1412, 13syl 14 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
15 elioore 9978 . . . . . . . . . 10 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
1615ad2antlr 489 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑐 ∈ ℝ)
1716ltnrd 8131 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑐 < 𝑐)
18 breq1 4032 . . . . . . . . 9 (𝑝 = 𝑐 → (𝑝 < 𝑐𝑐 < 𝑐))
19 simplrl 535 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → ∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐)
20 fveq2 5554 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
2120breq1d 4039 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑐) < 𝑈))
22 ioossicc 10025 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2322sseli 3175 . . . . . . . . . . . 12 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
2423adantl 277 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
2524ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ (𝐴[,]𝐵))
26 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → (𝐹𝑐) < 𝑈)
2721, 25, 26elrabd 2918 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈})
2818, 19, 27rspcdva 2869 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 < 𝑐)
2917, 28mtand 666 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) < 𝑈)
30 breq2 4033 . . . . . . . . 9 (𝑟 = 𝑐 → (𝑐 < 𝑟𝑐 < 𝑐))
31 simplrr 536 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)
3220breq2d 4041 . . . . . . . . . 10 (𝑤 = 𝑐 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑐)))
3324ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ (𝐴[,]𝐵))
34 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑈 < (𝐹𝑐))
3532, 33, 34elrabd 2918 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)})
3630, 31, 35rspcdva 2869 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 < 𝑐)
3717, 36mtand 666 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑈 < (𝐹𝑐))
38 ioran 753 . . . . . . 7 (¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)) ↔ (¬ (𝐹𝑐) < 𝑈 ∧ ¬ 𝑈 < (𝐹𝑐)))
3929, 37, 38sylanbrc 417 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)))
40 fveq2 5554 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4140eleq1d 2262 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
427ralrimiva 2567 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4342adantr 276 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4441, 43, 24rspcdva 2869 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
453adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℝ)
46 reaplt 8607 . . . . . . . 8 (((𝐹𝑐) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4744, 45, 46syl2anc 411 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4847adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4939, 48mtbird 674 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) # 𝑈)
5044recnd 8048 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
5150adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) ∈ ℂ)
523recnd 8048 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
5352ad2antrr 488 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑈 ∈ ℂ)
54 apti 8641 . . . . . 6 (((𝐹𝑐) ∈ ℂ ∧ 𝑈 ∈ ℂ) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5551, 53, 54syl2anc 411 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5649, 55mpbird 167 . . . 4 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) = 𝑈)
5756ex 115 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → (𝐹𝑐) = 𝑈))
5857reximdva 2596 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
5914, 58mpd 13 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  wrex 2473  ∃!wreu 2474  {crab 2476  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871   < clt 8054   # cap 8600  (,)cioo 9954  [,]cicc 9957  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-ioo 9958  df-icc 9961  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  ivthdec  14798  reeff1olem  14906
  Copyright terms: Public domain W3C validator