ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc GIF version

Theorem ivthinc 15165
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
Assertion
Ref Expression
ivthinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑐)

Proof of Theorem ivthinc
Dummy variables 𝑝 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
4 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
5 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
6 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
7 ivth.8 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
8 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9 ivthinc.i . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
10 eqid 2206 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
11 eqid 2206 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 15164 . . 3 (𝜑 → ∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
13 reurex 2725 . . 3 (∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
1412, 13syl 14 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
15 elioore 10047 . . . . . . . . . 10 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
1615ad2antlr 489 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑐 ∈ ℝ)
1716ltnrd 8197 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑐 < 𝑐)
18 breq1 4051 . . . . . . . . 9 (𝑝 = 𝑐 → (𝑝 < 𝑐𝑐 < 𝑐))
19 simplrl 535 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → ∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐)
20 fveq2 5586 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
2120breq1d 4058 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑐) < 𝑈))
22 ioossicc 10094 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2322sseli 3191 . . . . . . . . . . . 12 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
2423adantl 277 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
2524ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ (𝐴[,]𝐵))
26 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → (𝐹𝑐) < 𝑈)
2721, 25, 26elrabd 2933 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈})
2818, 19, 27rspcdva 2884 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 < 𝑐)
2917, 28mtand 667 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) < 𝑈)
30 breq2 4052 . . . . . . . . 9 (𝑟 = 𝑐 → (𝑐 < 𝑟𝑐 < 𝑐))
31 simplrr 536 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)
3220breq2d 4060 . . . . . . . . . 10 (𝑤 = 𝑐 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑐)))
3324ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ (𝐴[,]𝐵))
34 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑈 < (𝐹𝑐))
3532, 33, 34elrabd 2933 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)})
3630, 31, 35rspcdva 2884 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 < 𝑐)
3717, 36mtand 667 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑈 < (𝐹𝑐))
38 ioran 754 . . . . . . 7 (¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)) ↔ (¬ (𝐹𝑐) < 𝑈 ∧ ¬ 𝑈 < (𝐹𝑐)))
3929, 37, 38sylanbrc 417 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)))
40 fveq2 5586 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4140eleq1d 2275 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
427ralrimiva 2580 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4342adantr 276 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4441, 43, 24rspcdva 2884 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
453adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℝ)
46 reaplt 8674 . . . . . . . 8 (((𝐹𝑐) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4744, 45, 46syl2anc 411 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4847adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4939, 48mtbird 675 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) # 𝑈)
5044recnd 8114 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
5150adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) ∈ ℂ)
523recnd 8114 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
5352ad2antrr 488 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑈 ∈ ℂ)
54 apti 8708 . . . . . 6 (((𝐹𝑐) ∈ ℂ ∧ 𝑈 ∈ ℂ) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5551, 53, 54syl2anc 411 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5649, 55mpbird 167 . . . 4 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) = 𝑈)
5756ex 115 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → (𝐹𝑐) = 𝑈))
5857reximdva 2609 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
5914, 58mpd 13 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wral 2485  wrex 2486  ∃!wreu 2487  {crab 2489  wss 3168   class class class wbr 4048  cfv 5277  (class class class)co 5954  cc 7936  cr 7937   < clt 8120   # cap 8667  (,)cioo 10023  [,]cicc 10026  cnccncf 15092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058  ax-pre-suploc 8059
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-map 6747  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-rp 9789  df-ioo 10027  df-icc 10030  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-cncf 15093
This theorem is referenced by:  ivthdec  15166  reeff1olem  15293
  Copyright terms: Public domain W3C validator