ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc GIF version

Theorem ivthinc 13415
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
Assertion
Ref Expression
ivthinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑐)

Proof of Theorem ivthinc
Dummy variables 𝑝 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
4 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
5 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
6 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
7 ivth.8 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
8 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9 ivthinc.i . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
10 eqid 2170 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
11 eqid 2170 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 13414 . . 3 (𝜑 → ∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
13 reurex 2683 . . 3 (∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
1412, 13syl 14 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
15 elioore 9869 . . . . . . . . . 10 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
1615ad2antlr 486 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑐 ∈ ℝ)
1716ltnrd 8031 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑐 < 𝑐)
18 breq1 3992 . . . . . . . . 9 (𝑝 = 𝑐 → (𝑝 < 𝑐𝑐 < 𝑐))
19 simplrl 530 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → ∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐)
20 fveq2 5496 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
2120breq1d 3999 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑐) < 𝑈))
22 ioossicc 9916 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2322sseli 3143 . . . . . . . . . . . 12 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
2423adantl 275 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
2524ad2antrr 485 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ (𝐴[,]𝐵))
26 simpr 109 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → (𝐹𝑐) < 𝑈)
2721, 25, 26elrabd 2888 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈})
2818, 19, 27rspcdva 2839 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 < 𝑐)
2917, 28mtand 660 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) < 𝑈)
30 breq2 3993 . . . . . . . . 9 (𝑟 = 𝑐 → (𝑐 < 𝑟𝑐 < 𝑐))
31 simplrr 531 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)
3220breq2d 4001 . . . . . . . . . 10 (𝑤 = 𝑐 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑐)))
3324ad2antrr 485 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ (𝐴[,]𝐵))
34 simpr 109 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑈 < (𝐹𝑐))
3532, 33, 34elrabd 2888 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)})
3630, 31, 35rspcdva 2839 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 < 𝑐)
3717, 36mtand 660 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑈 < (𝐹𝑐))
38 ioran 747 . . . . . . 7 (¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)) ↔ (¬ (𝐹𝑐) < 𝑈 ∧ ¬ 𝑈 < (𝐹𝑐)))
3929, 37, 38sylanbrc 415 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)))
40 fveq2 5496 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4140eleq1d 2239 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
427ralrimiva 2543 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4342adantr 274 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4441, 43, 24rspcdva 2839 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
453adantr 274 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℝ)
46 reaplt 8507 . . . . . . . 8 (((𝐹𝑐) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4744, 45, 46syl2anc 409 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4847adantr 274 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4939, 48mtbird 668 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) # 𝑈)
5044recnd 7948 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
5150adantr 274 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) ∈ ℂ)
523recnd 7948 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
5352ad2antrr 485 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑈 ∈ ℂ)
54 apti 8541 . . . . . 6 (((𝐹𝑐) ∈ ℂ ∧ 𝑈 ∈ ℂ) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5551, 53, 54syl2anc 409 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5649, 55mpbird 166 . . . 4 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) = 𝑈)
5756ex 114 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → (𝐹𝑐) = 𝑈))
5857reximdva 2572 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
5914, 58mpd 13 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450  {crab 2452  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773   < clt 7954   # cap 8500  (,)cioo 9845  [,]cicc 9848  cnccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-ioo 9849  df-icc 9852  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  ivthdec  13416  reeff1olem  13486
  Copyright terms: Public domain W3C validator