ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinc GIF version

Theorem ivthinc 13788
Description: The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
Assertion
Ref Expression
ivthinc (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑐)

Proof of Theorem ivthinc
Dummy variables 𝑝 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
4 ivth.4 . . . 4 (𝜑𝐴 < 𝐵)
5 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
6 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
7 ivth.8 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
8 ivth.9 . . . 4 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9 ivthinc.i . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
10 eqid 2177 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
11 eqid 2177 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ivthinclemex 13787 . . 3 (𝜑 → ∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
13 reurex 2690 . . 3 (∃!𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
1412, 13syl 14 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟))
15 elioore 9899 . . . . . . . . . 10 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
1615ad2antlr 489 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑐 ∈ ℝ)
1716ltnrd 8059 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑐 < 𝑐)
18 breq1 4003 . . . . . . . . 9 (𝑝 = 𝑐 → (𝑝 < 𝑐𝑐 < 𝑐))
19 simplrl 535 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → ∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐)
20 fveq2 5511 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
2120breq1d 4010 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑐) < 𝑈))
22 ioossicc 9946 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2322sseli 3151 . . . . . . . . . . . 12 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
2423adantl 277 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
2524ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ (𝐴[,]𝐵))
26 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → (𝐹𝑐) < 𝑈)
2721, 25, 26elrabd 2895 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈})
2818, 19, 27rspcdva 2846 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ (𝐹𝑐) < 𝑈) → 𝑐 < 𝑐)
2917, 28mtand 665 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) < 𝑈)
30 breq2 4004 . . . . . . . . 9 (𝑟 = 𝑐 → (𝑐 < 𝑟𝑐 < 𝑐))
31 simplrr 536 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)
3220breq2d 4012 . . . . . . . . . 10 (𝑤 = 𝑐 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑐)))
3324ad2antrr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ (𝐴[,]𝐵))
34 simpr 110 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑈 < (𝐹𝑐))
3532, 33, 34elrabd 2895 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)})
3630, 31, 35rspcdva 2846 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) ∧ 𝑈 < (𝐹𝑐)) → 𝑐 < 𝑐)
3717, 36mtand 665 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ 𝑈 < (𝐹𝑐))
38 ioran 752 . . . . . . 7 (¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)) ↔ (¬ (𝐹𝑐) < 𝑈 ∧ ¬ 𝑈 < (𝐹𝑐)))
3929, 37, 38sylanbrc 417 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐)))
40 fveq2 5511 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4140eleq1d 2246 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
427ralrimiva 2550 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4342adantr 276 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4441, 43, 24rspcdva 2846 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
453adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℝ)
46 reaplt 8535 . . . . . . . 8 (((𝐹𝑐) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4744, 45, 46syl2anc 411 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4847adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) # 𝑈 ↔ ((𝐹𝑐) < 𝑈𝑈 < (𝐹𝑐))))
4939, 48mtbird 673 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ¬ (𝐹𝑐) # 𝑈)
5044recnd 7976 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
5150adantr 276 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) ∈ ℂ)
523recnd 7976 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
5352ad2antrr 488 . . . . . 6 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → 𝑈 ∈ ℂ)
54 apti 8569 . . . . . 6 (((𝐹𝑐) ∈ ℂ ∧ 𝑈 ∈ ℂ) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5551, 53, 54syl2anc 411 . . . . 5 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → ((𝐹𝑐) = 𝑈 ↔ ¬ (𝐹𝑐) # 𝑈))
5649, 55mpbird 167 . . . 4 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟)) → (𝐹𝑐) = 𝑈)
5756ex 115 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → (𝐹𝑐) = 𝑈))
5857reximdva 2579 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)(∀𝑝 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}𝑝 < 𝑐 ∧ ∀𝑟 ∈ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}𝑐 < 𝑟) → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
5914, 58mpd 13 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457  {crab 2459  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801   < clt 7982   # cap 8528  (,)cioo 9875  [,]cicc 9878  cnccncf 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-ioo 9879  df-icc 9882  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-cncf 13725
This theorem is referenced by:  ivthdec  13789  reeff1olem  13859
  Copyright terms: Public domain W3C validator