| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw2dvdseulemle | GIF version | ||
| Description: Lemma for pw2dvdseu 12656. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| Ref | Expression |
|---|---|
| pw2dvdseulemle.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| pw2dvdseulemle.a | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| pw2dvdseulemle.b | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
| pw2dvdseulemle.2a | ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) |
| pw2dvdseulemle.n2b | ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) |
| Ref | Expression |
|---|---|
| pw2dvdseulemle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2dvdseulemle.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | 1 | nn0red 9391 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | pw2dvdseulemle.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
| 4 | 3 | nn0red 9391 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | pw2dvdseulemle.n2b | . . 3 ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) | |
| 6 | 2cnd 9151 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 2 ∈ ℂ) | |
| 7 | 3 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℕ0) |
| 8 | peano2nn0 9377 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0) | |
| 9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ∈ ℕ0) |
| 10 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℕ0) |
| 11 | simpr 110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
| 12 | nn0ltp1le 9477 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) | |
| 13 | 7, 10, 12 | syl2anc 411 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) |
| 14 | 11, 13 | mpbid 147 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴) |
| 15 | nn0sub2 9488 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ (𝐵 + 1) ≤ 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0) | |
| 16 | 9, 10, 14, 15 | syl3anc 1252 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0) |
| 17 | 6, 16, 9 | expaddd 10864 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1))))) |
| 18 | 9 | nn0cnd 9392 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ∈ ℂ) |
| 19 | 10 | nn0cnd 9392 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℂ) |
| 20 | 18, 19 | pncan3d 8428 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐵 + 1) + (𝐴 − (𝐵 + 1))) = 𝐴) |
| 21 | 20 | oveq2d 5990 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = (2↑𝐴)) |
| 22 | pw2dvdseulemle.2a | . . . . . . 7 ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) | |
| 23 | 22 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑𝐴) ∥ 𝑁) |
| 24 | 21, 23 | eqbrtrd 4084 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) ∥ 𝑁) |
| 25 | 17, 24 | eqbrtrrd 4086 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁) |
| 26 | 2nn 9240 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 27 | 26 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 2 ∈ ℕ) |
| 28 | 27, 9 | nnexpcld 10884 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℕ) |
| 29 | 28 | nnzd 9536 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℤ) |
| 30 | 27, 16 | nnexpcld 10884 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℕ) |
| 31 | 30 | nnzd 9536 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ) |
| 32 | pw2dvdseulemle.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 33 | 32 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝑁 ∈ ℕ) |
| 34 | 33 | nnzd 9536 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝑁 ∈ ℤ) |
| 35 | muldvds1 12293 | . . . . 5 ⊢ (((2↑(𝐵 + 1)) ∈ ℤ ∧ (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁)) | |
| 36 | 29, 31, 34, 35 | syl3anc 1252 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁)) |
| 37 | 25, 36 | mpd 13 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∥ 𝑁) |
| 38 | 5, 37 | mtand 669 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| 39 | 2, 4, 38 | nltled 8235 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 1c1 7968 + caddc 7970 · cmul 7972 < clt 8149 ≤ cle 8150 − cmin 8285 ℕcn 9078 2c2 9129 ℕ0cn0 9337 ℤcz 9414 ↑cexp 10727 ∥ cdvds 12264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-seqfrec 10637 df-exp 10728 df-dvds 12265 |
| This theorem is referenced by: pw2dvdseu 12656 |
| Copyright terms: Public domain | W3C validator |