![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw2dvdseulemle | GIF version |
Description: Lemma for pw2dvdseu 12306. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
pw2dvdseulemle.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
pw2dvdseulemle.a | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
pw2dvdseulemle.b | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
pw2dvdseulemle.2a | ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) |
pw2dvdseulemle.n2b | ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) |
Ref | Expression |
---|---|
pw2dvdseulemle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2dvdseulemle.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0red 9294 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | pw2dvdseulemle.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
4 | 3 | nn0red 9294 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | pw2dvdseulemle.n2b | . . 3 ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) | |
6 | 2cnd 9055 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 2 ∈ ℂ) | |
7 | 3 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℕ0) |
8 | peano2nn0 9280 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0) | |
9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ∈ ℕ0) |
10 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℕ0) |
11 | simpr 110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
12 | nn0ltp1le 9379 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) | |
13 | 7, 10, 12 | syl2anc 411 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) |
14 | 11, 13 | mpbid 147 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴) |
15 | nn0sub2 9390 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ (𝐵 + 1) ≤ 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0) | |
16 | 9, 10, 14, 15 | syl3anc 1249 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0) |
17 | 6, 16, 9 | expaddd 10746 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1))))) |
18 | 9 | nn0cnd 9295 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ∈ ℂ) |
19 | 10 | nn0cnd 9295 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℂ) |
20 | 18, 19 | pncan3d 8333 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐵 + 1) + (𝐴 − (𝐵 + 1))) = 𝐴) |
21 | 20 | oveq2d 5934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = (2↑𝐴)) |
22 | pw2dvdseulemle.2a | . . . . . . 7 ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) | |
23 | 22 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑𝐴) ∥ 𝑁) |
24 | 21, 23 | eqbrtrd 4051 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) ∥ 𝑁) |
25 | 17, 24 | eqbrtrrd 4053 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁) |
26 | 2nn 9143 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
27 | 26 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 2 ∈ ℕ) |
28 | 27, 9 | nnexpcld 10766 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℕ) |
29 | 28 | nnzd 9438 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℤ) |
30 | 27, 16 | nnexpcld 10766 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℕ) |
31 | 30 | nnzd 9438 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ) |
32 | pw2dvdseulemle.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
33 | 32 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝑁 ∈ ℕ) |
34 | 33 | nnzd 9438 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝑁 ∈ ℤ) |
35 | muldvds1 11959 | . . . . 5 ⊢ (((2↑(𝐵 + 1)) ∈ ℤ ∧ (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁)) | |
36 | 29, 31, 34, 35 | syl3anc 1249 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁)) |
37 | 25, 36 | mpd 13 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∥ 𝑁) |
38 | 5, 37 | mtand 666 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
39 | 2, 4, 38 | nltled 8140 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 1c1 7873 + caddc 7875 · cmul 7877 < clt 8054 ≤ cle 8055 − cmin 8190 ℕcn 8982 2c2 9033 ℕ0cn0 9240 ℤcz 9317 ↑cexp 10609 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 df-exp 10610 df-dvds 11931 |
This theorem is referenced by: pw2dvdseu 12306 |
Copyright terms: Public domain | W3C validator |