ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseulemle GIF version

Theorem pw2dvdseulemle 12132
Description: Lemma for pw2dvdseu 12133. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
pw2dvdseulemle.n (𝜑𝑁 ∈ ℕ)
pw2dvdseulemle.a (𝜑𝐴 ∈ ℕ0)
pw2dvdseulemle.b (𝜑𝐵 ∈ ℕ0)
pw2dvdseulemle.2a (𝜑 → (2↑𝐴) ∥ 𝑁)
pw2dvdseulemle.n2b (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)
Assertion
Ref Expression
pw2dvdseulemle (𝜑𝐴𝐵)

Proof of Theorem pw2dvdseulemle
StepHypRef Expression
1 pw2dvdseulemle.a . . 3 (𝜑𝐴 ∈ ℕ0)
21nn0red 9201 . 2 (𝜑𝐴 ∈ ℝ)
3 pw2dvdseulemle.b . . 3 (𝜑𝐵 ∈ ℕ0)
43nn0red 9201 . 2 (𝜑𝐵 ∈ ℝ)
5 pw2dvdseulemle.n2b . . 3 (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)
6 2cnd 8963 . . . . . 6 ((𝜑𝐵 < 𝐴) → 2 ∈ ℂ)
73adantr 276 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℕ0)
8 peano2nn0 9187 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
97, 8syl 14 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ∈ ℕ0)
101adantr 276 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℕ0)
11 simpr 110 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
12 nn0ltp1le 9286 . . . . . . . . 9 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴))
137, 10, 12syl2anc 411 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴))
1411, 13mpbid 147 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴)
15 nn0sub2 9297 . . . . . . 7 (((𝐵 + 1) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 + 1) ≤ 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0)
169, 10, 14, 15syl3anc 1238 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0)
176, 16, 9expaddd 10623 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))))
189nn0cnd 9202 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ∈ ℂ)
1910nn0cnd 9202 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℂ)
2018, 19pncan3d 8245 . . . . . . 7 ((𝜑𝐵 < 𝐴) → ((𝐵 + 1) + (𝐴 − (𝐵 + 1))) = 𝐴)
2120oveq2d 5881 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = (2↑𝐴))
22 pw2dvdseulemle.2a . . . . . . 7 (𝜑 → (2↑𝐴) ∥ 𝑁)
2322adantr 276 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑𝐴) ∥ 𝑁)
2421, 23eqbrtrd 4020 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) ∥ 𝑁)
2517, 24eqbrtrrd 4022 . . . 4 ((𝜑𝐵 < 𝐴) → ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁)
26 2nn 9051 . . . . . . . 8 2 ∈ ℕ
2726a1i 9 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 2 ∈ ℕ)
2827, 9nnexpcld 10643 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℕ)
2928nnzd 9345 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℤ)
3027, 16nnexpcld 10643 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℕ)
3130nnzd 9345 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ)
32 pw2dvdseulemle.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3332adantr 276 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝑁 ∈ ℕ)
3433nnzd 9345 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝑁 ∈ ℤ)
35 muldvds1 11789 . . . . 5 (((2↑(𝐵 + 1)) ∈ ℤ ∧ (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁))
3629, 31, 34, 35syl3anc 1238 . . . 4 ((𝜑𝐵 < 𝐴) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁))
3725, 36mpd 13 . . 3 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∥ 𝑁)
385, 37mtand 665 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
392, 4, 38nltled 8052 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2146   class class class wbr 3998  (class class class)co 5865  1c1 7787   + caddc 7789   · cmul 7791   < clt 7966  cle 7967  cmin 8102  cn 8890  2c2 8941  0cn0 9147  cz 9224  cexp 10487  cdvds 11760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-n0 9148  df-z 9225  df-uz 9500  df-seqfrec 10414  df-exp 10488  df-dvds 11761
This theorem is referenced by:  pw2dvdseu  12133
  Copyright terms: Public domain W3C validator