ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseulemle GIF version

Theorem pw2dvdseulemle 11874
Description: Lemma for pw2dvdseu 11875. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
pw2dvdseulemle.n (𝜑𝑁 ∈ ℕ)
pw2dvdseulemle.a (𝜑𝐴 ∈ ℕ0)
pw2dvdseulemle.b (𝜑𝐵 ∈ ℕ0)
pw2dvdseulemle.2a (𝜑 → (2↑𝐴) ∥ 𝑁)
pw2dvdseulemle.n2b (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)
Assertion
Ref Expression
pw2dvdseulemle (𝜑𝐴𝐵)

Proof of Theorem pw2dvdseulemle
StepHypRef Expression
1 pw2dvdseulemle.a . . 3 (𝜑𝐴 ∈ ℕ0)
21nn0red 9053 . 2 (𝜑𝐴 ∈ ℝ)
3 pw2dvdseulemle.b . . 3 (𝜑𝐵 ∈ ℕ0)
43nn0red 9053 . 2 (𝜑𝐵 ∈ ℝ)
5 pw2dvdseulemle.n2b . . 3 (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)
6 2cnd 8815 . . . . . 6 ((𝜑𝐵 < 𝐴) → 2 ∈ ℂ)
73adantr 274 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℕ0)
8 peano2nn0 9039 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
97, 8syl 14 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ∈ ℕ0)
101adantr 274 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℕ0)
11 simpr 109 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
12 nn0ltp1le 9138 . . . . . . . . 9 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴))
137, 10, 12syl2anc 409 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴))
1411, 13mpbid 146 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴)
15 nn0sub2 9146 . . . . . . 7 (((𝐵 + 1) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 + 1) ≤ 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0)
169, 10, 14, 15syl3anc 1217 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0)
176, 16, 9expaddd 10455 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))))
189nn0cnd 9054 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ∈ ℂ)
1910nn0cnd 9054 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℂ)
2018, 19pncan3d 8098 . . . . . . 7 ((𝜑𝐵 < 𝐴) → ((𝐵 + 1) + (𝐴 − (𝐵 + 1))) = 𝐴)
2120oveq2d 5796 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = (2↑𝐴))
22 pw2dvdseulemle.2a . . . . . . 7 (𝜑 → (2↑𝐴) ∥ 𝑁)
2322adantr 274 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑𝐴) ∥ 𝑁)
2421, 23eqbrtrd 3956 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) ∥ 𝑁)
2517, 24eqbrtrrd 3958 . . . 4 ((𝜑𝐵 < 𝐴) → ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁)
26 2nn 8903 . . . . . . . 8 2 ∈ ℕ
2726a1i 9 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 2 ∈ ℕ)
2827, 9nnexpcld 10475 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℕ)
2928nnzd 9194 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℤ)
3027, 16nnexpcld 10475 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℕ)
3130nnzd 9194 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ)
32 pw2dvdseulemle.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3332adantr 274 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝑁 ∈ ℕ)
3433nnzd 9194 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝑁 ∈ ℤ)
35 muldvds1 11547 . . . . 5 (((2↑(𝐵 + 1)) ∈ ℤ ∧ (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁))
3629, 31, 34, 35syl3anc 1217 . . . 4 ((𝜑𝐵 < 𝐴) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁))
3725, 36mpd 13 . . 3 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∥ 𝑁)
385, 37mtand 655 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
392, 4, 38nltled 7905 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1481   class class class wbr 3935  (class class class)co 5780  1c1 7643   + caddc 7645   · cmul 7647   < clt 7822  cle 7823  cmin 7955  cn 8742  2c2 8793  0cn0 8999  cz 9076  cexp 10321  cdvds 11522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-mulrcl 7741  ax-addcom 7742  ax-mulcom 7743  ax-addass 7744  ax-mulass 7745  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-1rid 7749  ax-0id 7750  ax-rnegex 7751  ax-precex 7752  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758  ax-pre-mulgt0 7759  ax-pre-mulext 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-if 3478  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-po 4224  df-iso 4225  df-iord 4294  df-on 4296  df-ilim 4297  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-frec 6294  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-reap 8359  df-ap 8366  df-div 8455  df-inn 8743  df-2 8801  df-n0 9000  df-z 9077  df-uz 9349  df-seqfrec 10248  df-exp 10322  df-dvds 11523
This theorem is referenced by:  pw2dvdseu  11875
  Copyright terms: Public domain W3C validator