Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw2dvdseulemle | GIF version |
Description: Lemma for pw2dvdseu 12100. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
pw2dvdseulemle.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
pw2dvdseulemle.a | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
pw2dvdseulemle.b | ⊢ (𝜑 → 𝐵 ∈ ℕ0) |
pw2dvdseulemle.2a | ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) |
pw2dvdseulemle.n2b | ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) |
Ref | Expression |
---|---|
pw2dvdseulemle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2dvdseulemle.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0red 9168 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | pw2dvdseulemle.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℕ0) | |
4 | 3 | nn0red 9168 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | pw2dvdseulemle.n2b | . . 3 ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) | |
6 | 2cnd 8930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 2 ∈ ℂ) | |
7 | 3 | adantr 274 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℕ0) |
8 | peano2nn0 9154 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0) | |
9 | 7, 8 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ∈ ℕ0) |
10 | 1 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℕ0) |
11 | simpr 109 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
12 | nn0ltp1le 9253 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) | |
13 | 7, 10, 12 | syl2anc 409 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴)) |
14 | 11, 13 | mpbid 146 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴) |
15 | nn0sub2 9264 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ (𝐵 + 1) ≤ 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0) | |
16 | 9, 10, 14, 15 | syl3anc 1228 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0) |
17 | 6, 16, 9 | expaddd 10590 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1))))) |
18 | 9 | nn0cnd 9169 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐵 + 1) ∈ ℂ) |
19 | 10 | nn0cnd 9169 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℂ) |
20 | 18, 19 | pncan3d 8212 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐵 + 1) + (𝐴 − (𝐵 + 1))) = 𝐴) |
21 | 20 | oveq2d 5858 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = (2↑𝐴)) |
22 | pw2dvdseulemle.2a | . . . . . . 7 ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) | |
23 | 22 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑𝐴) ∥ 𝑁) |
24 | 21, 23 | eqbrtrd 4004 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) ∥ 𝑁) |
25 | 17, 24 | eqbrtrrd 4006 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁) |
26 | 2nn 9018 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
27 | 26 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 2 ∈ ℕ) |
28 | 27, 9 | nnexpcld 10610 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℕ) |
29 | 28 | nnzd 9312 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℤ) |
30 | 27, 16 | nnexpcld 10610 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℕ) |
31 | 30 | nnzd 9312 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ) |
32 | pw2dvdseulemle.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
33 | 32 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝑁 ∈ ℕ) |
34 | 33 | nnzd 9312 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝑁 ∈ ℤ) |
35 | muldvds1 11756 | . . . . 5 ⊢ (((2↑(𝐵 + 1)) ∈ ℤ ∧ (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁)) | |
36 | 29, 31, 34, 35 | syl3anc 1228 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁)) |
37 | 25, 36 | mpd 13 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∥ 𝑁) |
38 | 5, 37 | mtand 655 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
39 | 2, 4, 38 | nltled 8019 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 1c1 7754 + caddc 7756 · cmul 7758 < clt 7933 ≤ cle 7934 − cmin 8069 ℕcn 8857 2c2 8908 ℕ0cn0 9114 ℤcz 9191 ↑cexp 10454 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 df-dvds 11728 |
This theorem is referenced by: pw2dvdseu 12100 |
Copyright terms: Public domain | W3C validator |