ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseulemle GIF version

Theorem pw2dvdseulemle 12121
Description: Lemma for pw2dvdseu 12122. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
pw2dvdseulemle.n (𝜑𝑁 ∈ ℕ)
pw2dvdseulemle.a (𝜑𝐴 ∈ ℕ0)
pw2dvdseulemle.b (𝜑𝐵 ∈ ℕ0)
pw2dvdseulemle.2a (𝜑 → (2↑𝐴) ∥ 𝑁)
pw2dvdseulemle.n2b (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)
Assertion
Ref Expression
pw2dvdseulemle (𝜑𝐴𝐵)

Proof of Theorem pw2dvdseulemle
StepHypRef Expression
1 pw2dvdseulemle.a . . 3 (𝜑𝐴 ∈ ℕ0)
21nn0red 9189 . 2 (𝜑𝐴 ∈ ℝ)
3 pw2dvdseulemle.b . . 3 (𝜑𝐵 ∈ ℕ0)
43nn0red 9189 . 2 (𝜑𝐵 ∈ ℝ)
5 pw2dvdseulemle.n2b . . 3 (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)
6 2cnd 8951 . . . . . 6 ((𝜑𝐵 < 𝐴) → 2 ∈ ℂ)
73adantr 274 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℕ0)
8 peano2nn0 9175 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
97, 8syl 14 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ∈ ℕ0)
101adantr 274 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℕ0)
11 simpr 109 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
12 nn0ltp1le 9274 . . . . . . . . 9 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴))
137, 10, 12syl2anc 409 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐵 < 𝐴 ↔ (𝐵 + 1) ≤ 𝐴))
1411, 13mpbid 146 . . . . . . 7 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ≤ 𝐴)
15 nn0sub2 9285 . . . . . . 7 (((𝐵 + 1) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 + 1) ≤ 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0)
169, 10, 14, 15syl3anc 1233 . . . . . 6 ((𝜑𝐵 < 𝐴) → (𝐴 − (𝐵 + 1)) ∈ ℕ0)
176, 16, 9expaddd 10611 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))))
189nn0cnd 9190 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → (𝐵 + 1) ∈ ℂ)
1910nn0cnd 9190 . . . . . . . 8 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℂ)
2018, 19pncan3d 8233 . . . . . . 7 ((𝜑𝐵 < 𝐴) → ((𝐵 + 1) + (𝐴 − (𝐵 + 1))) = 𝐴)
2120oveq2d 5869 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) = (2↑𝐴))
22 pw2dvdseulemle.2a . . . . . . 7 (𝜑 → (2↑𝐴) ∥ 𝑁)
2322adantr 274 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑𝐴) ∥ 𝑁)
2421, 23eqbrtrd 4011 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑((𝐵 + 1) + (𝐴 − (𝐵 + 1)))) ∥ 𝑁)
2517, 24eqbrtrrd 4013 . . . 4 ((𝜑𝐵 < 𝐴) → ((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁)
26 2nn 9039 . . . . . . . 8 2 ∈ ℕ
2726a1i 9 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 2 ∈ ℕ)
2827, 9nnexpcld 10631 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℕ)
2928nnzd 9333 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∈ ℤ)
3027, 16nnexpcld 10631 . . . . . 6 ((𝜑𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℕ)
3130nnzd 9333 . . . . 5 ((𝜑𝐵 < 𝐴) → (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ)
32 pw2dvdseulemle.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3332adantr 274 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝑁 ∈ ℕ)
3433nnzd 9333 . . . . 5 ((𝜑𝐵 < 𝐴) → 𝑁 ∈ ℤ)
35 muldvds1 11778 . . . . 5 (((2↑(𝐵 + 1)) ∈ ℤ ∧ (2↑(𝐴 − (𝐵 + 1))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁))
3629, 31, 34, 35syl3anc 1233 . . . 4 ((𝜑𝐵 < 𝐴) → (((2↑(𝐵 + 1)) · (2↑(𝐴 − (𝐵 + 1)))) ∥ 𝑁 → (2↑(𝐵 + 1)) ∥ 𝑁))
3725, 36mpd 13 . . 3 ((𝜑𝐵 < 𝐴) → (2↑(𝐵 + 1)) ∥ 𝑁)
385, 37mtand 660 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
392, 4, 38nltled 8040 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2141   class class class wbr 3989  (class class class)co 5853  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090  cn 8878  2c2 8929  0cn0 9135  cz 9212  cexp 10475  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by:  pw2dvdseu  12122
  Copyright terms: Public domain W3C validator