Proof of Theorem pythagtriplem11
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem11.1 |
. 2
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
2 | | pythagtriplem9 12201 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) |
3 | 2 | nnzd 9308 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℤ) |
4 | | simp3r 1016 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴) |
5 | | 2z 9215 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
6 | | nnz 9206 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
7 | 6 | 3ad2ant3 1010 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
8 | | nnz 9206 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
9 | 8 | 3ad2ant2 1009 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℤ) |
10 | 7, 9 | zaddcld 9313 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℤ) |
11 | 10 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ) |
12 | | nnz 9206 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
13 | 12 | 3ad2ant1 1008 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
14 | 13 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ) |
15 | | dvdsgcdb 11942 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ (𝐶 +
𝐵) ∈ ℤ ∧
𝐴 ∈ ℤ) →
((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))) |
16 | 5, 11, 14, 15 | mp3an2i 1332 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))) |
17 | 16 | biimpar 295 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → (2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴)) |
18 | 17 | simprd 113 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → 2 ∥ 𝐴) |
19 | 4, 18 | mtand 655 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
((𝐶 + 𝐵) gcd 𝐴)) |
20 | | pythagtriplem7 12199 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) |
21 | 20 | breq2d 3993 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥
(√‘(𝐶 + 𝐵)) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))) |
22 | 19, 21 | mtbird 663 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
(√‘(𝐶 + 𝐵))) |
23 | | pythagtriplem8 12200 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
24 | 23 | nnzd 9308 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℤ) |
25 | 7, 9 | zsubcld 9314 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
26 | 25 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℤ) |
27 | | dvdsgcdb 11942 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ 𝐴 ∈ ℤ)
→ ((2 ∥ (𝐶
− 𝐵) ∧ 2 ∥
𝐴) ↔ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴))) |
28 | 5, 26, 14, 27 | mp3an2i 1332 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶 − 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴))) |
29 | 28 | biimpar 295 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴)) → (2 ∥ (𝐶 − 𝐵) ∧ 2 ∥ 𝐴)) |
30 | 29 | simprd 113 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴)) → 2 ∥ 𝐴) |
31 | 4, 30 | mtand 655 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
((𝐶 − 𝐵) gcd 𝐴)) |
32 | | pythagtriplem6 12198 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) |
33 | 32 | breq2d 3993 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥
(√‘(𝐶 −
𝐵)) ↔ 2 ∥
((𝐶 − 𝐵) gcd 𝐴))) |
34 | 31, 33 | mtbird 663 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
(√‘(𝐶 −
𝐵))) |
35 | | opoe 11828 |
. . . . 5
⊢
((((√‘(𝐶
+ 𝐵)) ∈ ℤ ∧
¬ 2 ∥ (√‘(𝐶 + 𝐵))) ∧ ((√‘(𝐶 − 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(√‘(𝐶 −
𝐵)))) → 2 ∥
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))) |
36 | 3, 22, 24, 34, 35 | syl22anc 1229 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 ∥
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))) |
37 | 2, 23 | nnaddcld 8901 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℕ) |
38 | 37 | nnzd 9308 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℤ) |
39 | | evend2 11822 |
. . . . 5
⊢
(((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℤ →
(2 ∥ ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ↔ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ∈ ℤ)) |
40 | 38, 39 | syl 14 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ↔ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ∈ ℤ)) |
41 | 36, 40 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ∈ ℤ) |
42 | 2 | nnred 8866 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℝ) |
43 | 23 | nnred 8866 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℝ) |
44 | 2 | nngt0d 8897 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 <
(√‘(𝐶 + 𝐵))) |
45 | 23 | nngt0d 8897 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 <
(√‘(𝐶 −
𝐵))) |
46 | 42, 43, 44, 45 | addgt0d 8415 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 <
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))) |
47 | 37 | nnred 8866 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℝ) |
48 | | halfpos2 9083 |
. . . . 5
⊢
(((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℝ →
(0 < ((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ↔ 0 <
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2))) |
49 | 47, 48 | syl 14 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (0 <
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ↔ 0 < (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2))) |
50 | 46, 49 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 <
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2)) |
51 | | elnnz 9197 |
. . 3
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) / 2) ∈ ℕ
↔ ((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) / 2) ∈ ℤ
∧ 0 < (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2))) |
52 | 41, 50, 51 | sylanbrc 414 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) ∈ ℕ) |
53 | 1, 52 | eqeltrid 2252 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ) |