ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phpm GIF version

Theorem phpm 6908
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols 𝑥𝑥 ∈ (𝐴𝐵) (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6895 through phplem4 6898, nneneq 6900, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
phpm ((𝐴 ∈ ω ∧ 𝐵𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem phpm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 eldifi 3277 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
3 ne0i 3449 . . . . . . . . 9 (𝑥𝐴𝐴 ≠ ∅)
42, 3syl 14 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 𝐴 ≠ ∅)
54neneqd 2381 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → ¬ 𝐴 = ∅)
65ad2antlr 489 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝐴 = ∅) → ¬ 𝐴 = ∅)
71, 6pm2.21dd 621 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝐴 = ∅) → ¬ 𝐴𝐵)
8 php5dom 6906 . . . . . . . . . 10 (𝑦 ∈ ω → ¬ suc 𝑦𝑦)
98ad2antlr 489 . . . . . . . . 9 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → ¬ suc 𝑦𝑦)
10 simplr 528 . . . . . . . . . 10 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐴 = suc 𝑦)
11 simpr 110 . . . . . . . . . . 11 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐴𝐵)
12 vex 2759 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
1312sucex 4523 . . . . . . . . . . . . . . 15 suc 𝑦 ∈ V
14 difss 3281 . . . . . . . . . . . . . . 15 (suc 𝑦 ∖ {𝑥}) ⊆ suc 𝑦
1513, 14ssexi 4163 . . . . . . . . . . . . . 14 (suc 𝑦 ∖ {𝑥}) ∈ V
16 eldifn 3278 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
1716ad3antlr 493 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → ¬ 𝑥𝐵)
18 simpllr 534 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) → 𝐵𝐴)
1918adantr 276 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵𝐴)
20 simpr 110 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐴 = suc 𝑦)
2119, 20sseqtrd 3213 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵 ⊆ suc 𝑦)
22 ssdif 3290 . . . . . . . . . . . . . . . 16 (𝐵 ⊆ suc 𝑦 → (𝐵 ∖ {𝑥}) ⊆ (suc 𝑦 ∖ {𝑥}))
23 disjsn 3676 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝐵)
24 disj3 3495 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∩ {𝑥}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑥}))
2523, 24bitr3i 186 . . . . . . . . . . . . . . . . 17 𝑥𝐵𝐵 = (𝐵 ∖ {𝑥}))
26 sseq1 3198 . . . . . . . . . . . . . . . . 17 (𝐵 = (𝐵 ∖ {𝑥}) → (𝐵 ⊆ (suc 𝑦 ∖ {𝑥}) ↔ (𝐵 ∖ {𝑥}) ⊆ (suc 𝑦 ∖ {𝑥})))
2725, 26sylbi 121 . . . . . . . . . . . . . . . 16 𝑥𝐵 → (𝐵 ⊆ (suc 𝑦 ∖ {𝑥}) ↔ (𝐵 ∖ {𝑥}) ⊆ (suc 𝑦 ∖ {𝑥})))
2822, 27imbitrrid 156 . . . . . . . . . . . . . . 15 𝑥𝐵 → (𝐵 ⊆ suc 𝑦𝐵 ⊆ (suc 𝑦 ∖ {𝑥})))
2917, 21, 28sylc 62 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵 ⊆ (suc 𝑦 ∖ {𝑥}))
30 ssdomg 6819 . . . . . . . . . . . . . 14 ((suc 𝑦 ∖ {𝑥}) ∈ V → (𝐵 ⊆ (suc 𝑦 ∖ {𝑥}) → 𝐵 ≼ (suc 𝑦 ∖ {𝑥})))
3115, 29, 30mpsyl 65 . . . . . . . . . . . . 13 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵 ≼ (suc 𝑦 ∖ {𝑥}))
32 simplr 528 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝑦 ∈ ω)
332ad3antlr 493 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝑥𝐴)
3433, 20eleqtrd 2268 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝑥 ∈ suc 𝑦)
35 phplem3g 6899 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ 𝑥 ∈ suc 𝑦) → 𝑦 ≈ (suc 𝑦 ∖ {𝑥}))
3635ensymd 6824 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑥 ∈ suc 𝑦) → (suc 𝑦 ∖ {𝑥}) ≈ 𝑦)
3732, 34, 36syl2anc 411 . . . . . . . . . . . . 13 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → (suc 𝑦 ∖ {𝑥}) ≈ 𝑦)
38 domentr 6832 . . . . . . . . . . . . 13 ((𝐵 ≼ (suc 𝑦 ∖ {𝑥}) ∧ (suc 𝑦 ∖ {𝑥}) ≈ 𝑦) → 𝐵𝑦)
3931, 37, 38syl2anc 411 . . . . . . . . . . . 12 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → 𝐵𝑦)
4039adantr 276 . . . . . . . . . . 11 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐵𝑦)
41 endomtr 6831 . . . . . . . . . . 11 ((𝐴𝐵𝐵𝑦) → 𝐴𝑦)
4211, 40, 41syl2anc 411 . . . . . . . . . 10 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → 𝐴𝑦)
4310, 42eqbrtrrd 4049 . . . . . . . . 9 ((((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) ∧ 𝐴𝐵) → suc 𝑦𝑦)
449, 43mtand 666 . . . . . . . 8 (((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) ∧ 𝐴 = suc 𝑦) → ¬ 𝐴𝐵)
4544ex 115 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ 𝑦 ∈ ω) → (𝐴 = suc 𝑦 → ¬ 𝐴𝐵))
4645rexlimdva 2607 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → (∃𝑦 ∈ ω 𝐴 = suc 𝑦 → ¬ 𝐴𝐵))
4746imp 124 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ∃𝑦 ∈ ω 𝐴 = suc 𝑦) → ¬ 𝐴𝐵)
48 nn0suc 4628 . . . . . 6 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑦 ∈ ω 𝐴 = suc 𝑦))
4948ad2antrr 488 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝐴 = ∅ ∨ ∃𝑦 ∈ ω 𝐴 = suc 𝑦))
507, 47, 49mpjaodan 799 . . . 4 (((𝐴 ∈ ω ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
5150ex 115 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → ¬ 𝐴𝐵))
5251exlimdv 1830 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (∃𝑥 𝑥 ∈ (𝐴𝐵) → ¬ 𝐴𝐵))
53523impia 1202 1 ((𝐴 ∈ ω ∧ 𝐵𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1503  wcel 2160  wne 2360  wrex 2469  Vcvv 2756  cdif 3146  cin 3148  wss 3149  c0 3442  {csn 3614   class class class wbr 4025  suc csuc 4390  ωcom 4614  cen 6779  cdom 6780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2758  df-sbc 2982  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-br 4026  df-opab 4087  df-tr 4124  df-id 4318  df-iord 4391  df-on 4393  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-er 6574  df-en 6782  df-dom 6783
This theorem is referenced by:  phpelm  6909
  Copyright terms: Public domain W3C validator