ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tridc GIF version

Theorem tridc 7003
Description: A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
tridc.po (𝜑𝑅 Po 𝐴)
tridc.tri (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
tridc.b (𝜑𝐵𝐴)
tridc.c (𝜑𝐶𝐴)
Assertion
Ref Expression
tridc (𝜑DECID 𝐵𝑅𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem tridc
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝐵𝑅𝐶) → 𝐵𝑅𝐶)
21orcd 735 . . 3 ((𝜑𝐵𝑅𝐶) → (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶))
3 df-dc 837 . . 3 (DECID 𝐵𝑅𝐶 ↔ (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶))
42, 3sylibr 134 . 2 ((𝜑𝐵𝑅𝐶) → DECID 𝐵𝑅𝐶)
5 tridc.po . . . . . . 7 (𝜑𝑅 Po 𝐴)
6 tridc.c . . . . . . 7 (𝜑𝐶𝐴)
7 poirr 4358 . . . . . . 7 ((𝑅 Po 𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
85, 6, 7syl2anc 411 . . . . . 6 (𝜑 → ¬ 𝐶𝑅𝐶)
98adantr 276 . . . . 5 ((𝜑𝐵 = 𝐶) → ¬ 𝐶𝑅𝐶)
10 simpr 110 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
1110breq1d 4057 . . . . 5 ((𝜑𝐵 = 𝐶) → (𝐵𝑅𝐶𝐶𝑅𝐶))
129, 11mtbird 675 . . . 4 ((𝜑𝐵 = 𝐶) → ¬ 𝐵𝑅𝐶)
1312olcd 736 . . 3 ((𝜑𝐵 = 𝐶) → (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶))
1413, 3sylibr 134 . 2 ((𝜑𝐵 = 𝐶) → DECID 𝐵𝑅𝐶)
15 tridc.b . . . . . . 7 (𝜑𝐵𝐴)
16 po2nr 4360 . . . . . . 7 ((𝑅 Po 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
175, 6, 15, 16syl12anc 1248 . . . . . 6 (𝜑 → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
1817adantr 276 . . . . 5 ((𝜑𝐶𝑅𝐵) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
19 simplr 528 . . . . . 6 (((𝜑𝐶𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐶𝑅𝐵)
20 simpr 110 . . . . . 6 (((𝜑𝐶𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶)
2119, 20jca 306 . . . . 5 (((𝜑𝐶𝑅𝐵) ∧ 𝐵𝑅𝐶) → (𝐶𝑅𝐵𝐵𝑅𝐶))
2218, 21mtand 667 . . . 4 ((𝜑𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶)
2322olcd 736 . . 3 ((𝜑𝐶𝑅𝐵) → (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶))
2423, 3sylibr 134 . 2 ((𝜑𝐶𝑅𝐵) → DECID 𝐵𝑅𝐶)
25 tridc.tri . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
26 breq1 4050 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
27 eqeq1 2213 . . . . 5 (𝑥 = 𝐵 → (𝑥 = 𝑦𝐵 = 𝑦))
28 breq2 4051 . . . . 5 (𝑥 = 𝐵 → (𝑦𝑅𝑥𝑦𝑅𝐵))
2926, 27, 283orbi123d 1324 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵)))
30 breq2 4051 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
31 eqeq2 2216 . . . . 5 (𝑦 = 𝐶 → (𝐵 = 𝑦𝐵 = 𝐶))
32 breq1 4050 . . . . 5 (𝑦 = 𝐶 → (𝑦𝑅𝐵𝐶𝑅𝐵))
3330, 31, 323orbi123d 1324 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦𝐵 = 𝑦𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
3429, 33rspc2va 2892 . . 3 (((𝐵𝐴𝐶𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
3515, 6, 25, 34syl21anc 1249 . 2 (𝜑 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
364, 14, 24, 35mpjao3dan 1320 1 (𝜑DECID 𝐵𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  wral 2485   class class class wbr 4047   Po wpo 4345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3171  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-po 4347
This theorem is referenced by:  fimax2gtrilemstep  7004
  Copyright terms: Public domain W3C validator