Proof of Theorem tridc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | 
| 2 | 1 | orcd 734 | 
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶)) | 
| 3 |   | df-dc 836 | 
. . 3
⊢
(DECID 𝐵𝑅𝐶 ↔ (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶)) | 
| 4 | 2, 3 | sylibr 134 | 
. 2
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → DECID 𝐵𝑅𝐶) | 
| 5 |   | tridc.po | 
. . . . . . 7
⊢ (𝜑 → 𝑅 Po 𝐴) | 
| 6 |   | tridc.c | 
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝐴) | 
| 7 |   | poirr 4342 | 
. . . . . . 7
⊢ ((𝑅 Po 𝐴 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶𝑅𝐶) | 
| 8 | 5, 6, 7 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → ¬ 𝐶𝑅𝐶) | 
| 9 | 8 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → ¬ 𝐶𝑅𝐶) | 
| 10 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | 
| 11 | 10 | breq1d 4043 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → (𝐵𝑅𝐶 ↔ 𝐶𝑅𝐶)) | 
| 12 | 9, 11 | mtbird 674 | 
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → ¬ 𝐵𝑅𝐶) | 
| 13 | 12 | olcd 735 | 
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶)) | 
| 14 | 13, 3 | sylibr 134 | 
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → DECID 𝐵𝑅𝐶) | 
| 15 |   | tridc.b | 
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| 16 |   | po2nr 4344 | 
. . . . . . 7
⊢ ((𝑅 Po 𝐴 ∧ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ¬ (𝐶𝑅𝐵 ∧ 𝐵𝑅𝐶)) | 
| 17 | 5, 6, 15, 16 | syl12anc 1247 | 
. . . . . 6
⊢ (𝜑 → ¬ (𝐶𝑅𝐵 ∧ 𝐵𝑅𝐶)) | 
| 18 | 17 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → ¬ (𝐶𝑅𝐵 ∧ 𝐵𝑅𝐶)) | 
| 19 |   | simplr 528 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐶𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐶𝑅𝐵) | 
| 20 |   | simpr 110 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝐶𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | 
| 21 | 19, 20 | jca 306 | 
. . . . 5
⊢ (((𝜑 ∧ 𝐶𝑅𝐵) ∧ 𝐵𝑅𝐶) → (𝐶𝑅𝐵 ∧ 𝐵𝑅𝐶)) | 
| 22 | 18, 21 | mtand 666 | 
. . . 4
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶) | 
| 23 | 22 | olcd 735 | 
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → (𝐵𝑅𝐶 ∨ ¬ 𝐵𝑅𝐶)) | 
| 24 | 23, 3 | sylibr 134 | 
. 2
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → DECID 𝐵𝑅𝐶) | 
| 25 |   | tridc.tri | 
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | 
| 26 |   | breq1 4036 | 
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) | 
| 27 |   | eqeq1 2203 | 
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥 = 𝑦 ↔ 𝐵 = 𝑦)) | 
| 28 |   | breq2 4037 | 
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐵)) | 
| 29 | 26, 27, 28 | 3orbi123d 1322 | 
. . . 4
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝐵𝑅𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦𝑅𝐵))) | 
| 30 |   | breq2 4037 | 
. . . . 5
⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) | 
| 31 |   | eqeq2 2206 | 
. . . . 5
⊢ (𝑦 = 𝐶 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐶)) | 
| 32 |   | breq1 4036 | 
. . . . 5
⊢ (𝑦 = 𝐶 → (𝑦𝑅𝐵 ↔ 𝐶𝑅𝐵)) | 
| 33 | 30, 31, 32 | 3orbi123d 1322 | 
. . . 4
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | 
| 34 | 29, 33 | rspc2va 2882 | 
. . 3
⊢ (((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | 
| 35 | 15, 6, 25, 34 | syl21anc 1248 | 
. 2
⊢ (𝜑 → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | 
| 36 | 4, 14, 24, 35 | mpjao3dan 1318 | 
1
⊢ (𝜑 → DECID 𝐵𝑅𝐶) |