Step | Hyp | Ref
| Expression |
1 | | simplr 528 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℝ) |
2 | 1 | recnd 7988 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℂ) |
3 | 2 | abscld 11192 |
. . . . . . 7
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ∈ ℝ) |
4 | 2 | absge0d 11195 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ≤ (abs‘𝑧)) |
5 | | simpr 110 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ≠ 0) |
6 | 2, 5 | absne0d 11198 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ≠ 0) |
7 | | breq2 4009 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑧) → (0 < 𝑦 ↔ 0 < (abs‘𝑧))) |
8 | | breq2 4009 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (abs‘𝑧))) |
9 | | neeq1 2360 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑧) → (𝑦 ≠ 0 ↔ (abs‘𝑧) ≠ 0)) |
10 | 8, 9 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑧) → ((0 ≤ 𝑦 ∧ 𝑦 ≠ 0) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0))) |
11 | 7, 10 | bibi12d 235 |
. . . . . . . . 9
⊢ (𝑦 = (abs‘𝑧) → ((0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0)) ↔ (0 < (abs‘𝑧) ↔ (0 ≤
(abs‘𝑧) ∧
(abs‘𝑧) ≠
0)))) |
12 | | breq1 4008 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦)) |
13 | | breq1 4008 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) |
14 | | neeq2 2361 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑦 ≠ 𝑥 ↔ 𝑦 ≠ 0)) |
15 | 13, 14 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0))) |
16 | 12, 15 | bibi12d 235 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ↔ (0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0)))) |
17 | 16 | ralbidv 2477 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ↔ ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0)))) |
18 | | simpll 527 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) |
19 | | 0red 7960 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ∈
ℝ) |
20 | 17, 18, 19 | rspcdva 2848 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0))) |
21 | 11, 20, 3 | rspcdva 2848 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (0 < (abs‘𝑧) ↔ (0 ≤
(abs‘𝑧) ∧
(abs‘𝑧) ≠
0))) |
22 | 4, 6, 21 | mpbir2and 944 |
. . . . . . 7
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 < (abs‘𝑧)) |
23 | 3, 22 | gt0ap0d 8588 |
. . . . . 6
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) # 0) |
24 | | abs00ap 11073 |
. . . . . . 7
⊢ (𝑧 ∈ ℂ →
((abs‘𝑧) # 0 ↔
𝑧 # 0)) |
25 | 2, 24 | syl 14 |
. . . . . 6
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ((abs‘𝑧) # 0 ↔ 𝑧 # 0)) |
26 | 23, 25 | mpbid 147 |
. . . . 5
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 # 0) |
27 | 26 | ex 115 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) → (𝑧 ≠ 0 → 𝑧 # 0)) |
28 | 27 | ralrimiva 2550 |
. . 3
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0)) |
29 | | neeq1 2360 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 ≠ 0 ↔ 𝑥 ≠ 0)) |
30 | | breq1 4008 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) |
31 | 29, 30 | imbi12d 234 |
. . . 4
⊢ (𝑧 = 𝑥 → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ (𝑥 ≠ 0 → 𝑥 # 0))) |
32 | 31 | cbvralv 2705 |
. . 3
⊢
(∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
33 | 28, 32 | sylib 122 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
34 | | neap0mkv 14902 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
35 | 33, 34 | sylibr 134 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) |