| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℝ) |
| 2 | 1 | recnd 8055 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℂ) |
| 3 | 2 | abscld 11346 |
. . . . . . 7
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ∈ ℝ) |
| 4 | 2 | absge0d 11349 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ≤ (abs‘𝑧)) |
| 5 | | simpr 110 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ≠ 0) |
| 6 | 2, 5 | absne0d 11352 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ≠ 0) |
| 7 | | breq2 4037 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑧) → (0 < 𝑦 ↔ 0 < (abs‘𝑧))) |
| 8 | | breq2 4037 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (abs‘𝑧))) |
| 9 | | neeq1 2380 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑧) → (𝑦 ≠ 0 ↔ (abs‘𝑧) ≠ 0)) |
| 10 | 8, 9 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑧) → ((0 ≤ 𝑦 ∧ 𝑦 ≠ 0) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0))) |
| 11 | 7, 10 | bibi12d 235 |
. . . . . . . . 9
⊢ (𝑦 = (abs‘𝑧) → ((0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0)) ↔ (0 < (abs‘𝑧) ↔ (0 ≤
(abs‘𝑧) ∧
(abs‘𝑧) ≠
0)))) |
| 12 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦)) |
| 13 | | breq1 4036 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) |
| 14 | | neeq2 2381 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑦 ≠ 𝑥 ↔ 𝑦 ≠ 0)) |
| 15 | 13, 14 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥) ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0))) |
| 16 | 12, 15 | bibi12d 235 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ↔ (0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0)))) |
| 17 | 16 | ralbidv 2497 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ↔ ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0)))) |
| 18 | | simpll 527 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥))) |
| 19 | | 0red 8027 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ∈
ℝ) |
| 20 | 17, 18, 19 | rspcdva 2873 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦 ∧ 𝑦 ≠ 0))) |
| 21 | 11, 20, 3 | rspcdva 2873 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (0 < (abs‘𝑧) ↔ (0 ≤
(abs‘𝑧) ∧
(abs‘𝑧) ≠
0))) |
| 22 | 4, 6, 21 | mpbir2and 946 |
. . . . . . 7
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 < (abs‘𝑧)) |
| 23 | 3, 22 | gt0ap0d 8656 |
. . . . . 6
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) # 0) |
| 24 | | abs00ap 11227 |
. . . . . . 7
⊢ (𝑧 ∈ ℂ →
((abs‘𝑧) # 0 ↔
𝑧 # 0)) |
| 25 | 2, 24 | syl 14 |
. . . . . 6
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ((abs‘𝑧) # 0 ↔ 𝑧 # 0)) |
| 26 | 23, 25 | mpbid 147 |
. . . . 5
⊢
(((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 # 0) |
| 27 | 26 | ex 115 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) ∧ 𝑧 ∈ ℝ) → (𝑧 ≠ 0 → 𝑧 # 0)) |
| 28 | 27 | ralrimiva 2570 |
. . 3
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0)) |
| 29 | | neeq1 2380 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 ≠ 0 ↔ 𝑥 ≠ 0)) |
| 30 | | breq1 4036 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0)) |
| 31 | 29, 30 | imbi12d 234 |
. . . 4
⊢ (𝑧 = 𝑥 → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ (𝑥 ≠ 0 → 𝑥 # 0))) |
| 32 | 31 | cbvralv 2729 |
. . 3
⊢
(∀𝑧 ∈
ℝ (𝑧 ≠ 0 →
𝑧 # 0) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
| 33 | 28, 32 | sylib 122 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
| 34 | | neap0mkv 15713 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) |
| 35 | 33, 34 | sylibr 134 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) |