Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ltlenmkv GIF version

Theorem ltlenmkv 16009
Description: If < can be expressed as holding exactly when holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 16007). (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
ltlenmkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem ltlenmkv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . . . 9 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℝ)
21recnd 8101 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℂ)
32abscld 11492 . . . . . . 7 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ∈ ℝ)
42absge0d 11495 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ≤ (abs‘𝑧))
5 simpr 110 . . . . . . . . 9 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ≠ 0)
62, 5absne0d 11498 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ≠ 0)
7 breq2 4048 . . . . . . . . . 10 (𝑦 = (abs‘𝑧) → (0 < 𝑦 ↔ 0 < (abs‘𝑧)))
8 breq2 4048 . . . . . . . . . . 11 (𝑦 = (abs‘𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (abs‘𝑧)))
9 neeq1 2389 . . . . . . . . . . 11 (𝑦 = (abs‘𝑧) → (𝑦 ≠ 0 ↔ (abs‘𝑧) ≠ 0))
108, 9anbi12d 473 . . . . . . . . . 10 (𝑦 = (abs‘𝑧) → ((0 ≤ 𝑦𝑦 ≠ 0) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0)))
117, 10bibi12d 235 . . . . . . . . 9 (𝑦 = (abs‘𝑧) → ((0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0)) ↔ (0 < (abs‘𝑧) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0))))
12 breq1 4047 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
13 breq1 4047 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
14 neeq2 2390 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑦𝑥𝑦 ≠ 0))
1513, 14anbi12d 473 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥𝑦𝑦𝑥) ↔ (0 ≤ 𝑦𝑦 ≠ 0)))
1612, 15bibi12d 235 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ↔ (0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0))))
1716ralbidv 2506 . . . . . . . . . 10 (𝑥 = 0 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ↔ ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0))))
18 simpll 527 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
19 0red 8073 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ∈ ℝ)
2017, 18, 19rspcdva 2882 . . . . . . . . 9 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0)))
2111, 20, 3rspcdva 2882 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (0 < (abs‘𝑧) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0)))
224, 6, 21mpbir2and 947 . . . . . . 7 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 < (abs‘𝑧))
233, 22gt0ap0d 8702 . . . . . 6 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) # 0)
24 abs00ap 11373 . . . . . . 7 (𝑧 ∈ ℂ → ((abs‘𝑧) # 0 ↔ 𝑧 # 0))
252, 24syl 14 . . . . . 6 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ((abs‘𝑧) # 0 ↔ 𝑧 # 0))
2623, 25mpbid 147 . . . . 5 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 # 0)
2726ex 115 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) → (𝑧 ≠ 0 → 𝑧 # 0))
2827ralrimiva 2579 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
29 neeq1 2389 . . . . 5 (𝑧 = 𝑥 → (𝑧 ≠ 0 ↔ 𝑥 ≠ 0))
30 breq1 4047 . . . . 5 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
3129, 30imbi12d 234 . . . 4 (𝑧 = 𝑥 → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ (𝑥 ≠ 0 → 𝑥 # 0)))
3231cbvralv 2738 . . 3 (∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
3328, 32sylib 122 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
34 neap0mkv 16008 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
3533, 34sylibr 134 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wne 2376  wral 2484   class class class wbr 4044  cfv 5271  cc 7923  cr 7924  0cc0 7925   < clt 8107  cle 8108   # cap 8654  abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator