Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ltlenmkv GIF version

Theorem ltlenmkv 15007
Description: If < can be expressed as holding exactly when holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 15005). (Contributed by Jim Kingdon, 23-Feb-2025.)
Assertion
Ref Expression
ltlenmkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
Distinct variable group:   𝑥,𝑦

Proof of Theorem ltlenmkv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . . . 9 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℝ)
21recnd 7989 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ∈ ℂ)
32abscld 11193 . . . . . . 7 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ∈ ℝ)
42absge0d 11196 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ≤ (abs‘𝑧))
5 simpr 110 . . . . . . . . 9 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 ≠ 0)
62, 5absne0d 11199 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) ≠ 0)
7 breq2 4009 . . . . . . . . . 10 (𝑦 = (abs‘𝑧) → (0 < 𝑦 ↔ 0 < (abs‘𝑧)))
8 breq2 4009 . . . . . . . . . . 11 (𝑦 = (abs‘𝑧) → (0 ≤ 𝑦 ↔ 0 ≤ (abs‘𝑧)))
9 neeq1 2360 . . . . . . . . . . 11 (𝑦 = (abs‘𝑧) → (𝑦 ≠ 0 ↔ (abs‘𝑧) ≠ 0))
108, 9anbi12d 473 . . . . . . . . . 10 (𝑦 = (abs‘𝑧) → ((0 ≤ 𝑦𝑦 ≠ 0) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0)))
117, 10bibi12d 235 . . . . . . . . 9 (𝑦 = (abs‘𝑧) → ((0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0)) ↔ (0 < (abs‘𝑧) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0))))
12 breq1 4008 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
13 breq1 4008 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
14 neeq2 2361 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑦𝑥𝑦 ≠ 0))
1513, 14anbi12d 473 . . . . . . . . . . . 12 (𝑥 = 0 → ((𝑥𝑦𝑦𝑥) ↔ (0 ≤ 𝑦𝑦 ≠ 0)))
1612, 15bibi12d 235 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ↔ (0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0))))
1716ralbidv 2477 . . . . . . . . . 10 (𝑥 = 0 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ↔ ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0))))
18 simpll 527 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
19 0red 7961 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 ∈ ℝ)
2017, 18, 19rspcdva 2848 . . . . . . . . 9 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ∀𝑦 ∈ ℝ (0 < 𝑦 ↔ (0 ≤ 𝑦𝑦 ≠ 0)))
2111, 20, 3rspcdva 2848 . . . . . . . 8 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (0 < (abs‘𝑧) ↔ (0 ≤ (abs‘𝑧) ∧ (abs‘𝑧) ≠ 0)))
224, 6, 21mpbir2and 944 . . . . . . 7 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 0 < (abs‘𝑧))
233, 22gt0ap0d 8589 . . . . . 6 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → (abs‘𝑧) # 0)
24 abs00ap 11074 . . . . . . 7 (𝑧 ∈ ℂ → ((abs‘𝑧) # 0 ↔ 𝑧 # 0))
252, 24syl 14 . . . . . 6 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → ((abs‘𝑧) # 0 ↔ 𝑧 # 0))
2623, 25mpbid 147 . . . . 5 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ≠ 0) → 𝑧 # 0)
2726ex 115 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) ∧ 𝑧 ∈ ℝ) → (𝑧 ≠ 0 → 𝑧 # 0))
2827ralrimiva 2550 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0))
29 neeq1 2360 . . . . 5 (𝑧 = 𝑥 → (𝑧 ≠ 0 ↔ 𝑥 ≠ 0))
30 breq1 4008 . . . . 5 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
3129, 30imbi12d 234 . . . 4 (𝑧 = 𝑥 → ((𝑧 ≠ 0 → 𝑧 # 0) ↔ (𝑥 ≠ 0 → 𝑥 # 0)))
3231cbvralv 2705 . . 3 (∀𝑧 ∈ ℝ (𝑧 ≠ 0 → 𝑧 # 0) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
3328, 32sylib 122 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
34 neap0mkv 15006 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0))
3533, 34sylibr 134 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  wral 2455   class class class wbr 4005  cfv 5218  cc 7812  cr 7813  0cc0 7814   < clt 7995  cle 7996   # cap 8541  abscabs 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-rp 9657  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator