ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disji2 GIF version

Theorem disji2 4026
Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1 (𝑥 = 𝑋𝐵 = 𝐶)
disji.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
disji2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disji2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjnims 4025 . . 3 (Disj 𝑥𝐴 𝐵 → ∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
2 neeq1 2380 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑧𝑋𝑧))
3 nfcv 2339 . . . . . . . 8 𝑥𝑋
4 nfcv 2339 . . . . . . . 8 𝑥𝐶
5 disji.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐶)
63, 4, 5csbhypf 3123 . . . . . . 7 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝐶)
76ineq1d 3363 . . . . . 6 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = (𝐶𝑧 / 𝑥𝐵))
87eqeq1d 2205 . . . . 5 (𝑦 = 𝑋 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ ↔ (𝐶𝑧 / 𝑥𝐵) = ∅))
92, 8imbi12d 234 . . . 4 (𝑦 = 𝑋 → ((𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) ↔ (𝑋𝑧 → (𝐶𝑧 / 𝑥𝐵) = ∅)))
10 neeq2 2381 . . . . 5 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
11 nfcv 2339 . . . . . . . 8 𝑥𝑌
12 nfcv 2339 . . . . . . . 8 𝑥𝐷
13 disji.2 . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐷)
1411, 12, 13csbhypf 3123 . . . . . . 7 (𝑧 = 𝑌𝑧 / 𝑥𝐵 = 𝐷)
1514ineq2d 3364 . . . . . 6 (𝑧 = 𝑌 → (𝐶𝑧 / 𝑥𝐵) = (𝐶𝐷))
1615eqeq1d 2205 . . . . 5 (𝑧 = 𝑌 → ((𝐶𝑧 / 𝑥𝐵) = ∅ ↔ (𝐶𝐷) = ∅))
1710, 16imbi12d 234 . . . 4 (𝑧 = 𝑌 → ((𝑋𝑧 → (𝐶𝑧 / 𝑥𝐵) = ∅) ↔ (𝑋𝑌 → (𝐶𝐷) = ∅)))
189, 17rspc2v 2881 . . 3 ((𝑋𝐴𝑌𝐴) → (∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑋𝑌 → (𝐶𝐷) = ∅)))
191, 18mpan9 281 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑌 → (𝐶𝐷) = ∅))
20193impia 1202 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wne 2367  wral 2475  csb 3084  cin 3156  c0 3450  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-in 3163  df-nul 3451  df-disj 4011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator