ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disji2 GIF version

Theorem disji2 4043
Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1 (𝑥 = 𝑋𝐵 = 𝐶)
disji.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
disji2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disji2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjnims 4042 . . 3 (Disj 𝑥𝐴 𝐵 → ∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
2 neeq1 2390 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑧𝑋𝑧))
3 nfcv 2349 . . . . . . . 8 𝑥𝑋
4 nfcv 2349 . . . . . . . 8 𝑥𝐶
5 disji.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐶)
63, 4, 5csbhypf 3136 . . . . . . 7 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝐶)
76ineq1d 3377 . . . . . 6 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = (𝐶𝑧 / 𝑥𝐵))
87eqeq1d 2215 . . . . 5 (𝑦 = 𝑋 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ ↔ (𝐶𝑧 / 𝑥𝐵) = ∅))
92, 8imbi12d 234 . . . 4 (𝑦 = 𝑋 → ((𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) ↔ (𝑋𝑧 → (𝐶𝑧 / 𝑥𝐵) = ∅)))
10 neeq2 2391 . . . . 5 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
11 nfcv 2349 . . . . . . . 8 𝑥𝑌
12 nfcv 2349 . . . . . . . 8 𝑥𝐷
13 disji.2 . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐷)
1411, 12, 13csbhypf 3136 . . . . . . 7 (𝑧 = 𝑌𝑧 / 𝑥𝐵 = 𝐷)
1514ineq2d 3378 . . . . . 6 (𝑧 = 𝑌 → (𝐶𝑧 / 𝑥𝐵) = (𝐶𝐷))
1615eqeq1d 2215 . . . . 5 (𝑧 = 𝑌 → ((𝐶𝑧 / 𝑥𝐵) = ∅ ↔ (𝐶𝐷) = ∅))
1710, 16imbi12d 234 . . . 4 (𝑧 = 𝑌 → ((𝑋𝑧 → (𝐶𝑧 / 𝑥𝐵) = ∅) ↔ (𝑋𝑌 → (𝐶𝐷) = ∅)))
189, 17rspc2v 2894 . . 3 ((𝑋𝐴𝑌𝐴) → (∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑋𝑌 → (𝐶𝐷) = ∅)))
191, 18mpan9 281 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑌 → (𝐶𝐷) = ∅))
20193impia 1203 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wne 2377  wral 2485  csb 3097  cin 3169  c0 3464  Disj wdisj 4027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-in 3176  df-nul 3465  df-disj 4028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator