| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disji2 | GIF version | ||
| Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋 ≠ 𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disji.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| disji.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| disji2 | ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjnims 4042 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) | |
| 2 | neeq1 2390 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≠ 𝑧 ↔ 𝑋 ≠ 𝑧)) | |
| 3 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑋 | |
| 4 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 5 | disji.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 6 | 3, 4, 5 | csbhypf 3136 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 7 | 6 | ineq1d 3377 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵)) |
| 8 | 7 | eqeq1d 2215 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 9 | 2, 8 | imbi12d 234 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) ↔ (𝑋 ≠ 𝑧 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅))) |
| 10 | neeq2 2391 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑋 ≠ 𝑧 ↔ 𝑋 ≠ 𝑌)) | |
| 11 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 | |
| 12 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
| 13 | disji.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 14 | 11, 12, 13 | csbhypf 3136 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ⦋𝑧 / 𝑥⦌𝐵 = 𝐷) |
| 15 | 14 | ineq2d 3378 | . . . . . 6 ⊢ (𝑧 = 𝑌 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = (𝐶 ∩ 𝐷)) |
| 16 | 15 | eqeq1d 2215 | . . . . 5 ⊢ (𝑧 = 𝑌 → ((𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ 𝐷) = ∅)) |
| 17 | 10, 16 | imbi12d 234 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑋 ≠ 𝑧 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) ↔ (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅))) |
| 18 | 9, 17 | rspc2v 2894 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅))) |
| 19 | 1, 18 | mpan9 281 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅)) |
| 20 | 19 | 3impia 1203 | 1 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 ⦋csb 3097 ∩ cin 3169 ∅c0 3464 Disj wdisj 4027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-in 3176 df-nul 3465 df-disj 4028 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |