ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disji2 GIF version

Theorem disji2 3998
Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1 (𝑥 = 𝑋𝐵 = 𝐶)
disji.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
disji2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disji2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjnims 3997 . . 3 (Disj 𝑥𝐴 𝐵 → ∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
2 neeq1 2360 . . . . 5 (𝑦 = 𝑋 → (𝑦𝑧𝑋𝑧))
3 nfcv 2319 . . . . . . . 8 𝑥𝑋
4 nfcv 2319 . . . . . . . 8 𝑥𝐶
5 disji.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐶)
63, 4, 5csbhypf 3097 . . . . . . 7 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝐶)
76ineq1d 3337 . . . . . 6 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = (𝐶𝑧 / 𝑥𝐵))
87eqeq1d 2186 . . . . 5 (𝑦 = 𝑋 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ ↔ (𝐶𝑧 / 𝑥𝐵) = ∅))
92, 8imbi12d 234 . . . 4 (𝑦 = 𝑋 → ((𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) ↔ (𝑋𝑧 → (𝐶𝑧 / 𝑥𝐵) = ∅)))
10 neeq2 2361 . . . . 5 (𝑧 = 𝑌 → (𝑋𝑧𝑋𝑌))
11 nfcv 2319 . . . . . . . 8 𝑥𝑌
12 nfcv 2319 . . . . . . . 8 𝑥𝐷
13 disji.2 . . . . . . . 8 (𝑥 = 𝑌𝐵 = 𝐷)
1411, 12, 13csbhypf 3097 . . . . . . 7 (𝑧 = 𝑌𝑧 / 𝑥𝐵 = 𝐷)
1514ineq2d 3338 . . . . . 6 (𝑧 = 𝑌 → (𝐶𝑧 / 𝑥𝐵) = (𝐶𝐷))
1615eqeq1d 2186 . . . . 5 (𝑧 = 𝑌 → ((𝐶𝑧 / 𝑥𝐵) = ∅ ↔ (𝐶𝐷) = ∅))
1710, 16imbi12d 234 . . . 4 (𝑧 = 𝑌 → ((𝑋𝑧 → (𝐶𝑧 / 𝑥𝐵) = ∅) ↔ (𝑋𝑌 → (𝐶𝐷) = ∅)))
189, 17rspc2v 2856 . . 3 ((𝑋𝐴𝑌𝐴) → (∀𝑦𝐴𝑧𝐴 (𝑦𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑋𝑌 → (𝐶𝐷) = ∅)))
191, 18mpan9 281 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝑋𝑌 → (𝐶𝐷) = ∅))
20193impia 1200 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  csb 3059  cin 3130  c0 3424  Disj wdisj 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-in 3137  df-nul 3425  df-disj 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator