| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disji2 | GIF version | ||
| Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋 ≠ 𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disji.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| disji.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| disji2 | ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjnims 4025 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) | |
| 2 | neeq1 2380 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≠ 𝑧 ↔ 𝑋 ≠ 𝑧)) | |
| 3 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑋 | |
| 4 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 5 | disji.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 6 | 3, 4, 5 | csbhypf 3123 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 7 | 6 | ineq1d 3363 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵)) |
| 8 | 7 | eqeq1d 2205 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 9 | 2, 8 | imbi12d 234 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) ↔ (𝑋 ≠ 𝑧 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅))) |
| 10 | neeq2 2381 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑋 ≠ 𝑧 ↔ 𝑋 ≠ 𝑌)) | |
| 11 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 | |
| 12 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
| 13 | disji.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 14 | 11, 12, 13 | csbhypf 3123 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ⦋𝑧 / 𝑥⦌𝐵 = 𝐷) |
| 15 | 14 | ineq2d 3364 | . . . . . 6 ⊢ (𝑧 = 𝑌 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = (𝐶 ∩ 𝐷)) |
| 16 | 15 | eqeq1d 2205 | . . . . 5 ⊢ (𝑧 = 𝑌 → ((𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ 𝐷) = ∅)) |
| 17 | 10, 16 | imbi12d 234 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑋 ≠ 𝑧 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) ↔ (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅))) |
| 18 | 9, 17 | rspc2v 2881 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅))) |
| 19 | 1, 18 | mpan9 281 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅)) |
| 20 | 19 | 3impia 1202 | 1 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ⦋csb 3084 ∩ cin 3156 ∅c0 3450 Disj wdisj 4010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-in 3163 df-nul 3451 df-disj 4011 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |