| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disji2 | GIF version | ||
| Description: Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋 ≠ 𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disji.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| disji.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| disji2 | ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjnims 4073 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) | |
| 2 | neeq1 2413 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≠ 𝑧 ↔ 𝑋 ≠ 𝑧)) | |
| 3 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑋 | |
| 4 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 5 | disji.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 6 | 3, 4, 5 | csbhypf 3163 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 7 | 6 | ineq1d 3404 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵)) |
| 8 | 7 | eqeq1d 2238 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 9 | 2, 8 | imbi12d 234 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) ↔ (𝑋 ≠ 𝑧 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅))) |
| 10 | neeq2 2414 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑋 ≠ 𝑧 ↔ 𝑋 ≠ 𝑌)) | |
| 11 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 | |
| 12 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
| 13 | disji.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 14 | 11, 12, 13 | csbhypf 3163 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ⦋𝑧 / 𝑥⦌𝐵 = 𝐷) |
| 15 | 14 | ineq2d 3405 | . . . . . 6 ⊢ (𝑧 = 𝑌 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = (𝐶 ∩ 𝐷)) |
| 16 | 15 | eqeq1d 2238 | . . . . 5 ⊢ (𝑧 = 𝑌 → ((𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ ↔ (𝐶 ∩ 𝐷) = ∅)) |
| 17 | 10, 16 | imbi12d 234 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑋 ≠ 𝑧 → (𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) ↔ (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅))) |
| 18 | 9, 17 | rspc2v 2920 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≠ 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅))) |
| 19 | 1, 18 | mpan9 281 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋 ≠ 𝑌 → (𝐶 ∩ 𝐷) = ∅)) |
| 20 | 19 | 3impia 1224 | 1 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ⦋csb 3124 ∩ cin 3196 ∅c0 3491 Disj wdisj 4058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-in 3203 df-nul 3492 df-disj 4059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |