ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel GIF version

Theorem 2oneel 7438
Description: and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6576 . . 3 1o ≠ ∅
21necomi 2485 . 2 ∅ ≠ 1o
3 0lt2o 6585 . . 3 ∅ ∈ 2o
4 1lt2o 6586 . . 3 1o ∈ 2o
5 neeq1 2413 . . . 4 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
6 neeq2 2414 . . . 4 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
75, 6opelopab2 4358 . . 3 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o))
83, 4, 7mp2an 426 . 2 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o)
92, 8mpbir 146 1 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2200  wne 2400  c0 3491  cop 3669  {copab 4143  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-opab 4145  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  2omotaplemst  7440
  Copyright terms: Public domain W3C validator