ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel GIF version

Theorem 2oneel 7316
Description: and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6485 . . 3 1o ≠ ∅
21necomi 2449 . 2 ∅ ≠ 1o
3 0lt2o 6494 . . 3 ∅ ∈ 2o
4 1lt2o 6495 . . 3 1o ∈ 2o
5 neeq1 2377 . . . 4 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
6 neeq2 2378 . . . 4 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
75, 6opelopab2 4301 . . 3 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o))
83, 4, 7mp2an 426 . 2 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o)
92, 8mpbir 146 1 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2164  wne 2364  c0 3446  cop 3621  {copab 4089  1oc1o 6462  2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469  df-2o 6470
This theorem is referenced by:  2omotaplemst  7318
  Copyright terms: Public domain W3C validator