![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2oneel | GIF version |
Description: ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
Ref | Expression |
---|---|
2oneel | ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 6447 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2442 | . 2 ⊢ ∅ ≠ 1o |
3 | 0lt2o 6456 | . . 3 ⊢ ∅ ∈ 2o | |
4 | 1lt2o 6457 | . . 3 ⊢ 1o ∈ 2o | |
5 | neeq1 2370 | . . . 4 ⊢ (𝑢 = ∅ → (𝑢 ≠ 𝑣 ↔ ∅ ≠ 𝑣)) | |
6 | neeq2 2371 | . . . 4 ⊢ (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o)) | |
7 | 5, 6 | opelopab2 4282 | . . 3 ⊢ ((∅ ∈ 2o ∧ 1o ∈ 2o) → (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o)) |
8 | 3, 4, 7 | mp2an 426 | . 2 ⊢ (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o) |
9 | 2, 8 | mpbir 146 | 1 ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2158 ≠ wne 2357 ∅c0 3434 〈cop 3607 {copab 4075 1oc1o 6424 2oc2o 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-opab 4077 df-tr 4114 df-iord 4378 df-on 4380 df-suc 4383 df-1o 6431 df-2o 6432 |
This theorem is referenced by: 2omotaplemst 7271 |
Copyright terms: Public domain | W3C validator |