| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2oneel | GIF version | ||
| Description: ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2oneel | ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6499 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2452 | . 2 ⊢ ∅ ≠ 1o |
| 3 | 0lt2o 6508 | . . 3 ⊢ ∅ ∈ 2o | |
| 4 | 1lt2o 6509 | . . 3 ⊢ 1o ∈ 2o | |
| 5 | neeq1 2380 | . . . 4 ⊢ (𝑢 = ∅ → (𝑢 ≠ 𝑣 ↔ ∅ ≠ 𝑣)) | |
| 6 | neeq2 2381 | . . . 4 ⊢ (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o)) | |
| 7 | 5, 6 | opelopab2 4306 | . . 3 ⊢ ((∅ ∈ 2o ∧ 1o ∈ 2o) → (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o)) |
| 8 | 3, 4, 7 | mp2an 426 | . 2 ⊢ (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o) |
| 9 | 2, 8 | mpbir 146 | 1 ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 ∅c0 3451 〈cop 3626 {copab 4094 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-opab 4096 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: 2omotaplemst 7341 |
| Copyright terms: Public domain | W3C validator |