| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2oneel | GIF version | ||
| Description: ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2oneel | ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6531 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2462 | . 2 ⊢ ∅ ≠ 1o |
| 3 | 0lt2o 6540 | . . 3 ⊢ ∅ ∈ 2o | |
| 4 | 1lt2o 6541 | . . 3 ⊢ 1o ∈ 2o | |
| 5 | neeq1 2390 | . . . 4 ⊢ (𝑢 = ∅ → (𝑢 ≠ 𝑣 ↔ ∅ ≠ 𝑣)) | |
| 6 | neeq2 2391 | . . . 4 ⊢ (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o)) | |
| 7 | 5, 6 | opelopab2 4325 | . . 3 ⊢ ((∅ ∈ 2o ∧ 1o ∈ 2o) → (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o)) |
| 8 | 3, 4, 7 | mp2an 426 | . 2 ⊢ (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o) |
| 9 | 2, 8 | mpbir 146 | 1 ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 〈cop 3641 {copab 4112 1oc1o 6508 2oc2o 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-opab 4114 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-1o 6515 df-2o 6516 |
| This theorem is referenced by: 2omotaplemst 7390 |
| Copyright terms: Public domain | W3C validator |