ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel GIF version

Theorem 2oneel 7350
Description: and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6508 . . 3 1o ≠ ∅
21necomi 2460 . 2 ∅ ≠ 1o
3 0lt2o 6517 . . 3 ∅ ∈ 2o
4 1lt2o 6518 . . 3 1o ∈ 2o
5 neeq1 2388 . . . 4 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
6 neeq2 2389 . . . 4 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
75, 6opelopab2 4315 . . 3 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o))
83, 4, 7mp2an 426 . 2 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o)
92, 8mpbir 146 1 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2175  wne 2375  c0 3459  cop 3635  {copab 4103  1oc1o 6485  2oc2o 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-opab 4105  df-tr 4142  df-iord 4411  df-on 4413  df-suc 4416  df-1o 6492  df-2o 6493
This theorem is referenced by:  2omotaplemst  7352
  Copyright terms: Public domain W3C validator