| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2oneel | GIF version | ||
| Description: ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2oneel | ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6576 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2485 | . 2 ⊢ ∅ ≠ 1o |
| 3 | 0lt2o 6585 | . . 3 ⊢ ∅ ∈ 2o | |
| 4 | 1lt2o 6586 | . . 3 ⊢ 1o ∈ 2o | |
| 5 | neeq1 2413 | . . . 4 ⊢ (𝑢 = ∅ → (𝑢 ≠ 𝑣 ↔ ∅ ≠ 𝑣)) | |
| 6 | neeq2 2414 | . . . 4 ⊢ (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o)) | |
| 7 | 5, 6 | opelopab2 4358 | . . 3 ⊢ ((∅ ∈ 2o ∧ 1o ∈ 2o) → (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o)) |
| 8 | 3, 4, 7 | mp2an 426 | . 2 ⊢ (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o) |
| 9 | 2, 8 | mpbir 146 | 1 ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 〈cop 3669 {copab 4143 1oc1o 6553 2oc2o 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-opab 4145 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: 2omotaplemst 7440 |
| Copyright terms: Public domain | W3C validator |