ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oneel GIF version

Theorem 2oneel 7323
Description: and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.)
Assertion
Ref Expression
2oneel ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Distinct variable group:   𝑣,𝑢

Proof of Theorem 2oneel
StepHypRef Expression
1 1n0 6490 . . 3 1o ≠ ∅
21necomi 2452 . 2 ∅ ≠ 1o
3 0lt2o 6499 . . 3 ∅ ∈ 2o
4 1lt2o 6500 . . 3 1o ∈ 2o
5 neeq1 2380 . . . 4 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
6 neeq2 2381 . . . 4 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
75, 6opelopab2 4305 . . 3 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o))
83, 4, 7mp2an 426 . 2 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ↔ ∅ ≠ 1o)
92, 8mpbir 146 1 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167  wne 2367  c0 3450  cop 3625  {copab 4093  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-opab 4095  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by:  2omotaplemst  7325
  Copyright terms: Public domain W3C validator