![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2oneel | GIF version |
Description: ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
Ref | Expression |
---|---|
2oneel | ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 6487 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2449 | . 2 ⊢ ∅ ≠ 1o |
3 | 0lt2o 6496 | . . 3 ⊢ ∅ ∈ 2o | |
4 | 1lt2o 6497 | . . 3 ⊢ 1o ∈ 2o | |
5 | neeq1 2377 | . . . 4 ⊢ (𝑢 = ∅ → (𝑢 ≠ 𝑣 ↔ ∅ ≠ 𝑣)) | |
6 | neeq2 2378 | . . . 4 ⊢ (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o)) | |
7 | 5, 6 | opelopab2 4302 | . . 3 ⊢ ((∅ ∈ 2o ∧ 1o ∈ 2o) → (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o)) |
8 | 3, 4, 7 | mp2an 426 | . 2 ⊢ (〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} ↔ ∅ ≠ 1o) |
9 | 2, 8 | mpbir 146 | 1 ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ≠ wne 2364 ∅c0 3447 〈cop 3622 {copab 4090 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-opab 4092 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-1o 6471 df-2o 6472 |
This theorem is referenced by: 2omotaplemst 7320 |
Copyright terms: Public domain | W3C validator |