Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > neapmkv | GIF version |
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.) |
Ref | Expression |
---|---|
neapmkv | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6636 | . . . . . 6 ⊢ (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1}) | |
2 | 1 | adantl 275 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1}) |
3 | oveq2 5850 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
4 | 3 | oveq2d 5858 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
5 | fveq2 5486 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
6 | 4, 5 | oveq12d 5860 | . . . . . 6 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = ((1 / (2↑𝑗)) · (𝑓‘𝑗))) |
7 | 6 | cbvsumv 11302 | . . . . 5 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓‘𝑗)) |
8 | 2, 7 | trilpolemcl 13916 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ) |
9 | 1red 7914 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ) | |
10 | simpl 108 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) | |
11 | neeq1 2349 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦)) | |
12 | breq1 3985 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦)) | |
13 | 11, 12 | imbi12d 233 | . . . . . . . 8 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → ((𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦))) |
14 | neeq2 2350 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1)) | |
15 | breq2 3986 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) | |
16 | 14, 15 | imbi12d 233 | . . . . . . . 8 ⊢ (𝑦 = 1 → ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1))) |
17 | 13, 16 | rspc2va 2844 | . . . . . . 7 ⊢ (((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) |
18 | 8, 9, 10, 17 | syl21anc 1227 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) |
19 | 18 | imp 123 | . . . . 5 ⊢ (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1) |
20 | 2, 7, 19 | neapmkvlem 13945 | . . . 4 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
21 | 20 | ralrimiva 2539 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
22 | nnex 8863 | . . . 4 ⊢ ℕ ∈ V | |
23 | ismkvnn 13932 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0))) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
25 | 21, 24 | sylibr 133 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ℕ ∈ Markov) |
26 | nnenom 10369 | . . 3 ⊢ ℕ ≈ ω | |
27 | enmkv 7126 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ Markov ↔ ω ∈ Markov)) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ℕ ∈ Markov ↔ ω ∈ Markov) |
29 | 25, 28 | sylib 121 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 Vcvv 2726 {cpr 3577 class class class wbr 3982 ωcom 4567 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ↑𝑚 cmap 6614 ≈ cen 6704 Markovcmarkov 7115 ℝcr 7752 0cc0 7753 1c1 7754 · cmul 7758 # cap 8479 / cdiv 8568 ℕcn 8857 2c2 8908 ↑cexp 10454 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-2o 6385 df-oadd 6388 df-er 6501 df-map 6616 df-en 6707 df-dom 6708 df-fin 6709 df-omni 7099 df-markov 7116 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |