Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > neapmkv | GIF version |
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.) |
Ref | Expression |
---|---|
neapmkv | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6615 | . . . . . 6 ⊢ (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1}) | |
2 | 1 | adantl 275 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1}) |
3 | oveq2 5832 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
4 | 3 | oveq2d 5840 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
5 | fveq2 5468 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
6 | 4, 5 | oveq12d 5842 | . . . . . 6 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = ((1 / (2↑𝑗)) · (𝑓‘𝑗))) |
7 | 6 | cbvsumv 11258 | . . . . 5 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓‘𝑗)) |
8 | 2, 7 | trilpolemcl 13619 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ) |
9 | 1red 7893 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ) | |
10 | simpl 108 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) | |
11 | neeq1 2340 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦)) | |
12 | breq1 3968 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦)) | |
13 | 11, 12 | imbi12d 233 | . . . . . . . 8 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → ((𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦))) |
14 | neeq2 2341 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1)) | |
15 | breq2 3969 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) | |
16 | 14, 15 | imbi12d 233 | . . . . . . . 8 ⊢ (𝑦 = 1 → ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1))) |
17 | 13, 16 | rspc2va 2830 | . . . . . . 7 ⊢ (((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) |
18 | 8, 9, 10, 17 | syl21anc 1219 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) |
19 | 18 | imp 123 | . . . . 5 ⊢ (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1) |
20 | 2, 7, 19 | neapmkvlem 13648 | . . . 4 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
21 | 20 | ralrimiva 2530 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
22 | nnex 8839 | . . . 4 ⊢ ℕ ∈ V | |
23 | ismkvnn 13635 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0))) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
25 | 21, 24 | sylibr 133 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ℕ ∈ Markov) |
26 | nnenom 10333 | . . 3 ⊢ ℕ ≈ ω | |
27 | enmkv 7105 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ Markov ↔ ω ∈ Markov)) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ℕ ∈ Markov ↔ ω ∈ Markov) |
29 | 25, 28 | sylib 121 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∀wral 2435 ∃wrex 2436 Vcvv 2712 {cpr 3561 class class class wbr 3965 ωcom 4549 ⟶wf 5166 ‘cfv 5170 (class class class)co 5824 ↑𝑚 cmap 6593 ≈ cen 6683 Markovcmarkov 7094 ℝcr 7731 0cc0 7732 1c1 7733 · cmul 7737 # cap 8456 / cdiv 8545 ℕcn 8833 2c2 8884 ↑cexp 10418 Σcsu 11250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-isom 5179 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-frec 6338 df-1o 6363 df-2o 6364 df-oadd 6367 df-er 6480 df-map 6595 df-en 6686 df-dom 6687 df-fin 6688 df-omni 7078 df-markov 7095 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-q 9529 df-rp 9561 df-ico 9798 df-fz 9913 df-fzo 10042 df-seqfrec 10345 df-exp 10419 df-ihash 10650 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-clim 11176 df-sumdc 11251 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |