Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  neapmkv GIF version

Theorem neapmkv 16436
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
neapmkv (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ω ∈ Markov)
Distinct variable group:   𝑥,𝑦

Proof of Theorem neapmkv
Dummy variables 𝑓 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6817 . . . . . 6 (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1})
21adantl 277 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1})
3 oveq2 6009 . . . . . . . 8 (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗))
43oveq2d 6017 . . . . . . 7 (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗)))
5 fveq2 5627 . . . . . . 7 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
64, 5oveq12d 6019 . . . . . 6 (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓𝑖)) = ((1 / (2↑𝑗)) · (𝑓𝑗)))
76cbvsumv 11872 . . . . 5 Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓𝑗))
82, 7trilpolemcl 16405 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ)
9 1red 8161 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ)
10 simpl 109 . . . . . . 7 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦))
11 neeq1 2413 . . . . . . . . 9 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 𝑦))
12 breq1 4086 . . . . . . . . 9 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 𝑦))
1311, 12imbi12d 234 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → ((𝑥𝑦𝑥 # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 𝑦)))
14 neeq2 2414 . . . . . . . . 9 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 1))
15 breq2 4087 . . . . . . . . 9 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 1))
1614, 15imbi12d 234 . . . . . . . 8 (𝑦 = 1 → ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 1)))
1713, 16rspc2va 2921 . . . . . . 7 (((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 1))
188, 9, 10, 17syl21anc 1270 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 1))
1918imp 124 . . . . 5 (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ≠ 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) # 1)
202, 7, 19neapmkvlem 16435 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (¬ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓𝑧) = 0))
2120ralrimiva 2603 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓𝑧) = 0))
22 nnex 9116 . . . 4 ℕ ∈ V
23 ismkvnn 16421 . . . 4 (ℕ ∈ V → (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓𝑧) = 0)))
2422, 23ax-mp 5 . . 3 (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓𝑧) = 0))
2521, 24sylibr 134 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ℕ ∈ Markov)
26 nnenom 10656 . . 3 ℕ ≈ ω
27 enmkv 7329 . . 3 (ℕ ≈ ω → (ℕ ∈ Markov ↔ ω ∈ Markov))
2826, 27ax-mp 5 . 2 (ℕ ∈ Markov ↔ ω ∈ Markov)
2925, 28sylib 122 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥𝑦𝑥 # 𝑦) → ω ∈ Markov)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  Vcvv 2799  {cpr 3667   class class class wbr 4083  ωcom 4682  wf 5314  cfv 5318  (class class class)co 6001  𝑚 cmap 6795  cen 6885  Markovcmarkov 7318  cr 7998  0cc0 7999  1c1 8000   · cmul 8004   # cap 8728   / cdiv 8819  cn 9110  2c2 9161  cexp 10760  Σcsu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-omni 7302  df-markov 7319  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator