![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > neapmkv | GIF version |
Description: If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.) |
Ref | Expression |
---|---|
neapmkv | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6673 | . . . . . 6 ⊢ (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1}) | |
2 | 1 | adantl 277 | . . . . 5 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1}) |
3 | oveq2 5886 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
4 | 3 | oveq2d 5894 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
5 | fveq2 5517 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (𝑓‘𝑖) = (𝑓‘𝑗)) | |
6 | 4, 5 | oveq12d 5896 | . . . . . 6 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = ((1 / (2↑𝑗)) · (𝑓‘𝑗))) |
7 | 6 | cbvsumv 11372 | . . . . 5 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓‘𝑗)) |
8 | 2, 7 | trilpolemcl 14974 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ) |
9 | 1red 7975 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ) | |
10 | simpl 109 | . . . . . . 7 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) | |
11 | neeq1 2360 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦)) | |
12 | breq1 4008 | . . . . . . . . 9 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → (𝑥 # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦)) | |
13 | 11, 12 | imbi12d 234 | . . . . . . . 8 ⊢ (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) → ((𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦))) |
14 | neeq2 2361 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1)) | |
15 | breq2 4009 | . . . . . . . . 9 ⊢ (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) | |
16 | 14, 15 | imbi12d 234 | . . . . . . . 8 ⊢ (𝑦 = 1 → ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 𝑦 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 𝑦) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1))) |
17 | 13, 16 | rspc2va 2857 | . . . . . . 7 ⊢ (((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) |
18 | 8, 9, 10, 17 | syl21anc 1237 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1)) |
19 | 18 | imp 124 | . . . . 5 ⊢ (((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) ≠ 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓‘𝑖)) # 1) |
20 | 2, 7, 19 | neapmkvlem 15004 | . . . 4 ⊢ ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
21 | 20 | ralrimiva 2550 | . . 3 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
22 | nnex 8928 | . . . 4 ⊢ ℕ ∈ V | |
23 | ismkvnn 14990 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0))) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(¬ ∀𝑧 ∈ ℕ (𝑓‘𝑧) = 1 → ∃𝑧 ∈ ℕ (𝑓‘𝑧) = 0)) |
25 | 21, 24 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ℕ ∈ Markov) |
26 | nnenom 10437 | . . 3 ⊢ ℕ ≈ ω | |
27 | enmkv 7163 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ Markov ↔ ω ∈ Markov)) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ℕ ∈ Markov ↔ ω ∈ Markov) |
29 | 25, 28 | sylib 122 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 Vcvv 2739 {cpr 3595 class class class wbr 4005 ωcom 4591 ⟶wf 5214 ‘cfv 5218 (class class class)co 5878 ↑𝑚 cmap 6651 ≈ cen 6741 Markovcmarkov 7152 ℝcr 7813 0cc0 7814 1c1 7815 · cmul 7819 # cap 8541 / cdiv 8632 ℕcn 8922 2c2 8973 ↑cexp 10522 Σcsu 11364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-frec 6395 df-1o 6420 df-2o 6421 df-oadd 6424 df-er 6538 df-map 6653 df-en 6744 df-dom 6745 df-fin 6746 df-omni 7136 df-markov 7153 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-ico 9897 df-fz 10012 df-fzo 10146 df-seqfrec 10449 df-exp 10523 df-ihash 10759 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 df-clim 11290 df-sumdc 11365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |