| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbr | GIF version | ||
| Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbr.1 | ⊢ Ⅎ𝑥𝐴 |
| nfbr.2 | ⊢ Ⅎ𝑥𝑅 |
| nfbr.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfbr | ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbr.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfbr.2 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
| 5 | nfbr.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfbrd 4078 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴𝑅𝐵) |
| 8 | 7 | mptru 1373 | 1 ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1365 Ⅎwnf 1474 Ⅎwnfc 2326 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: sbcbrg 4087 nfpo 4336 nfso 4337 pofun 4347 nfse 4376 nffrfor 4383 nfwe 4390 nfco 4831 nfcnv 4845 dfdmf 4859 dfrnf 4907 nfdm 4910 dffun6f 5271 dffun4f 5274 nffv 5568 funfvdm2f 5626 fvmptss2 5636 f1ompt 5713 fmptco 5728 nfiso 5853 nfofr 6142 ofrfval2 6152 tposoprab 6338 xpcomco 6885 nfsup 7058 caucvgprprlemaddq 7775 lble 8974 nfsum1 11521 nfsum 11522 fsum00 11627 mertenslem2 11701 nfcprod1 11719 nfcprod 11720 fprodap0 11786 fprodrec 11794 fproddivapf 11796 fprodap0f 11801 fprodle 11805 oddpwdclemdvds 12338 oddpwdclemndvds 12339 |
| Copyright terms: Public domain | W3C validator |