Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbr | GIF version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 | ⊢ Ⅎ𝑥𝐴 |
nfbr.2 | ⊢ Ⅎ𝑥𝑅 |
nfbr.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfbr | ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfbr.2 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
5 | nfbr.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfbrd 4034 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴𝑅𝐵) |
8 | 7 | mptru 1357 | 1 ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1349 Ⅎwnf 1453 Ⅎwnfc 2299 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: sbcbrg 4043 nfpo 4286 nfso 4287 pofun 4297 nfse 4326 nffrfor 4333 nfwe 4340 nfco 4776 nfcnv 4790 dfdmf 4804 dfrnf 4852 nfdm 4855 dffun6f 5211 dffun4f 5214 nffv 5506 funfvdm2f 5561 fvmptss2 5571 f1ompt 5647 fmptco 5662 nfiso 5785 nfofr 6067 ofrfval2 6077 tposoprab 6259 xpcomco 6804 nfsup 6969 caucvgprprlemaddq 7670 lble 8863 nfsum1 11319 nfsum 11320 fsum00 11425 mertenslem2 11499 nfcprod1 11517 nfcprod 11518 fprodap0 11584 fprodrec 11592 fproddivapf 11594 fprodap0f 11599 fprodle 11603 oddpwdclemdvds 12124 oddpwdclemndvds 12125 |
Copyright terms: Public domain | W3C validator |