ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbr GIF version

Theorem nfbr 4090
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbr.1 𝑥𝐴
nfbr.2 𝑥𝑅
nfbr.3 𝑥𝐵
Assertion
Ref Expression
nfbr 𝑥 𝐴𝑅𝐵

Proof of Theorem nfbr
StepHypRef Expression
1 nfbr.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfbr.2 . . . 4 𝑥𝑅
43a1i 9 . . 3 (⊤ → 𝑥𝑅)
5 nfbr.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfbrd 4089 . 2 (⊤ → Ⅎ𝑥 𝐴𝑅𝐵)
87mptru 1382 1 𝑥 𝐴𝑅𝐵
Colors of variables: wff set class
Syntax hints:  wtru 1374  wnf 1483  wnfc 2335   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  sbcbrg  4098  nfpo  4348  nfso  4349  pofun  4359  nfse  4388  nffrfor  4395  nfwe  4402  nfco  4843  nfcnv  4857  dfdmf  4871  dfrnf  4919  nfdm  4922  dffun6f  5284  dffun4f  5287  nffv  5586  funfvdm2f  5644  fvmptss2  5654  f1ompt  5731  fmptco  5746  nfiso  5875  nfofr  6165  ofrfval2  6175  tposoprab  6366  xpcomco  6921  nfsup  7094  caucvgprprlemaddq  7821  lble  9020  nfsum1  11667  nfsum  11668  fsum00  11773  mertenslem2  11847  nfcprod1  11865  nfcprod  11866  fprodap0  11932  fprodrec  11940  fproddivapf  11942  fprodap0f  11947  fprodle  11951  oddpwdclemdvds  12492  oddpwdclemndvds  12493
  Copyright terms: Public domain W3C validator