Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbr | GIF version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 | ⊢ Ⅎ𝑥𝐴 |
nfbr.2 | ⊢ Ⅎ𝑥𝑅 |
nfbr.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfbr | ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfbr.2 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
5 | nfbr.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfbrd 4032 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴𝑅𝐵) |
8 | 7 | mptru 1357 | 1 ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1349 Ⅎwnf 1453 Ⅎwnfc 2299 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: sbcbrg 4041 nfpo 4284 nfso 4285 pofun 4295 nfse 4324 nffrfor 4331 nfwe 4338 nfco 4774 nfcnv 4788 dfdmf 4802 dfrnf 4850 nfdm 4853 dffun6f 5209 dffun4f 5212 nffv 5504 funfvdm2f 5559 fvmptss2 5569 f1ompt 5645 fmptco 5660 nfiso 5783 nfofr 6065 ofrfval2 6075 tposoprab 6257 xpcomco 6802 nfsup 6967 caucvgprprlemaddq 7663 lble 8856 nfsum1 11312 nfsum 11313 fsum00 11418 mertenslem2 11492 nfcprod1 11510 nfcprod 11511 fprodap0 11577 fprodrec 11585 fproddivapf 11587 fprodap0f 11592 fprodle 11596 oddpwdclemdvds 12117 oddpwdclemndvds 12118 |
Copyright terms: Public domain | W3C validator |