ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbr GIF version

Theorem nfbr 4033
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbr.1 𝑥𝐴
nfbr.2 𝑥𝑅
nfbr.3 𝑥𝐵
Assertion
Ref Expression
nfbr 𝑥 𝐴𝑅𝐵

Proof of Theorem nfbr
StepHypRef Expression
1 nfbr.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfbr.2 . . . 4 𝑥𝑅
43a1i 9 . . 3 (⊤ → 𝑥𝑅)
5 nfbr.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfbrd 4032 . 2 (⊤ → Ⅎ𝑥 𝐴𝑅𝐵)
87mptru 1357 1 𝑥 𝐴𝑅𝐵
Colors of variables: wff set class
Syntax hints:  wtru 1349  wnf 1453  wnfc 2299   class class class wbr 3987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988
This theorem is referenced by:  sbcbrg  4041  nfpo  4284  nfso  4285  pofun  4295  nfse  4324  nffrfor  4331  nfwe  4338  nfco  4774  nfcnv  4788  dfdmf  4802  dfrnf  4850  nfdm  4853  dffun6f  5209  dffun4f  5212  nffv  5504  funfvdm2f  5559  fvmptss2  5569  f1ompt  5645  fmptco  5660  nfiso  5783  nfofr  6065  ofrfval2  6075  tposoprab  6257  xpcomco  6802  nfsup  6967  caucvgprprlemaddq  7663  lble  8856  nfsum1  11312  nfsum  11313  fsum00  11418  mertenslem2  11492  nfcprod1  11510  nfcprod  11511  fprodap0  11577  fprodrec  11585  fproddivapf  11587  fprodap0f  11592  fprodle  11596  oddpwdclemdvds  12117  oddpwdclemndvds  12118
  Copyright terms: Public domain W3C validator