ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbr GIF version

Theorem nfbr 4079
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbr.1 𝑥𝐴
nfbr.2 𝑥𝑅
nfbr.3 𝑥𝐵
Assertion
Ref Expression
nfbr 𝑥 𝐴𝑅𝐵

Proof of Theorem nfbr
StepHypRef Expression
1 nfbr.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfbr.2 . . . 4 𝑥𝑅
43a1i 9 . . 3 (⊤ → 𝑥𝑅)
5 nfbr.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfbrd 4078 . 2 (⊤ → Ⅎ𝑥 𝐴𝑅𝐵)
87mptru 1373 1 𝑥 𝐴𝑅𝐵
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1474  wnfc 2326   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  sbcbrg  4087  nfpo  4336  nfso  4337  pofun  4347  nfse  4376  nffrfor  4383  nfwe  4390  nfco  4831  nfcnv  4845  dfdmf  4859  dfrnf  4907  nfdm  4910  dffun6f  5271  dffun4f  5274  nffv  5568  funfvdm2f  5626  fvmptss2  5636  f1ompt  5713  fmptco  5728  nfiso  5853  nfofr  6142  ofrfval2  6152  tposoprab  6338  xpcomco  6885  nfsup  7058  caucvgprprlemaddq  7775  lble  8974  nfsum1  11521  nfsum  11522  fsum00  11627  mertenslem2  11701  nfcprod1  11719  nfcprod  11720  fprodap0  11786  fprodrec  11794  fproddivapf  11796  fprodap0f  11801  fprodle  11805  oddpwdclemdvds  12338  oddpwdclemndvds  12339
  Copyright terms: Public domain W3C validator