ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbr GIF version

Theorem nfbr 4061
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbr.1 𝑥𝐴
nfbr.2 𝑥𝑅
nfbr.3 𝑥𝐵
Assertion
Ref Expression
nfbr 𝑥 𝐴𝑅𝐵

Proof of Theorem nfbr
StepHypRef Expression
1 nfbr.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfbr.2 . . . 4 𝑥𝑅
43a1i 9 . . 3 (⊤ → 𝑥𝑅)
5 nfbr.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfbrd 4060 . 2 (⊤ → Ⅎ𝑥 𝐴𝑅𝐵)
87mptru 1372 1 𝑥 𝐴𝑅𝐵
Colors of variables: wff set class
Syntax hints:  wtru 1364  wnf 1470  wnfc 2316   class class class wbr 4015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016
This theorem is referenced by:  sbcbrg  4069  nfpo  4313  nfso  4314  pofun  4324  nfse  4353  nffrfor  4360  nfwe  4367  nfco  4804  nfcnv  4818  dfdmf  4832  dfrnf  4880  nfdm  4883  dffun6f  5241  dffun4f  5244  nffv  5537  funfvdm2f  5594  fvmptss2  5604  f1ompt  5680  fmptco  5695  nfiso  5820  nfofr  6103  ofrfval2  6113  tposoprab  6295  xpcomco  6840  nfsup  7005  caucvgprprlemaddq  7721  lble  8918  nfsum1  11378  nfsum  11379  fsum00  11484  mertenslem2  11558  nfcprod1  11576  nfcprod  11577  fprodap0  11643  fprodrec  11651  fproddivapf  11653  fprodap0f  11658  fprodle  11662  oddpwdclemdvds  12184  oddpwdclemndvds  12185
  Copyright terms: Public domain W3C validator