![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbr | GIF version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 | ⊢ Ⅎ𝑥𝐴 |
nfbr.2 | ⊢ Ⅎ𝑥𝑅 |
nfbr.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfbr | ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfbr.2 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
5 | nfbr.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfbrd 4060 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴𝑅𝐵) |
8 | 7 | mptru 1372 | 1 ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1364 Ⅎwnf 1470 Ⅎwnfc 2316 class class class wbr 4015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 |
This theorem is referenced by: sbcbrg 4069 nfpo 4313 nfso 4314 pofun 4324 nfse 4353 nffrfor 4360 nfwe 4367 nfco 4804 nfcnv 4818 dfdmf 4832 dfrnf 4880 nfdm 4883 dffun6f 5241 dffun4f 5244 nffv 5537 funfvdm2f 5594 fvmptss2 5604 f1ompt 5680 fmptco 5695 nfiso 5820 nfofr 6103 ofrfval2 6113 tposoprab 6295 xpcomco 6840 nfsup 7005 caucvgprprlemaddq 7721 lble 8918 nfsum1 11378 nfsum 11379 fsum00 11484 mertenslem2 11558 nfcprod1 11576 nfcprod 11577 fprodap0 11643 fprodrec 11651 fproddivapf 11653 fprodap0f 11658 fprodle 11662 oddpwdclemdvds 12184 oddpwdclemndvds 12185 |
Copyright terms: Public domain | W3C validator |