| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbr | GIF version | ||
| Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbr.1 | ⊢ Ⅎ𝑥𝐴 |
| nfbr.2 | ⊢ Ⅎ𝑥𝑅 |
| nfbr.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfbr | ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbr.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfbr.2 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
| 5 | nfbr.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfbrd 4089 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴𝑅𝐵) |
| 8 | 7 | mptru 1382 | 1 ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnf 1483 Ⅎwnfc 2335 class class class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: sbcbrg 4098 nfpo 4348 nfso 4349 pofun 4359 nfse 4388 nffrfor 4395 nfwe 4402 nfco 4843 nfcnv 4857 dfdmf 4871 dfrnf 4919 nfdm 4922 dffun6f 5284 dffun4f 5287 nffv 5586 funfvdm2f 5644 fvmptss2 5654 f1ompt 5731 fmptco 5746 nfiso 5875 nfofr 6165 ofrfval2 6175 tposoprab 6366 xpcomco 6921 nfsup 7094 caucvgprprlemaddq 7821 lble 9020 nfsum1 11667 nfsum 11668 fsum00 11773 mertenslem2 11847 nfcprod1 11865 nfcprod 11866 fprodap0 11932 fprodrec 11940 fproddivapf 11942 fprodap0f 11947 fprodle 11951 oddpwdclemdvds 12492 oddpwdclemndvds 12493 |
| Copyright terms: Public domain | W3C validator |