![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbr | GIF version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 | ⊢ Ⅎ𝑥𝐴 |
nfbr.2 | ⊢ Ⅎ𝑥𝑅 |
nfbr.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfbr | ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfbr.2 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
5 | nfbr.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfbrd 4075 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴𝑅𝐵) |
8 | 7 | mptru 1373 | 1 ⊢ Ⅎ𝑥 𝐴𝑅𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1365 Ⅎwnf 1471 Ⅎwnfc 2323 class class class wbr 4030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: sbcbrg 4084 nfpo 4333 nfso 4334 pofun 4344 nfse 4373 nffrfor 4380 nfwe 4387 nfco 4828 nfcnv 4842 dfdmf 4856 dfrnf 4904 nfdm 4907 dffun6f 5268 dffun4f 5271 nffv 5565 funfvdm2f 5623 fvmptss2 5633 f1ompt 5710 fmptco 5725 nfiso 5850 nfofr 6139 ofrfval2 6149 tposoprab 6335 xpcomco 6882 nfsup 7053 caucvgprprlemaddq 7770 lble 8968 nfsum1 11502 nfsum 11503 fsum00 11608 mertenslem2 11682 nfcprod1 11700 nfcprod 11701 fprodap0 11767 fprodrec 11775 fproddivapf 11777 fprodap0f 11782 fprodle 11786 oddpwdclemdvds 12311 oddpwdclemndvds 12312 |
Copyright terms: Public domain | W3C validator |