Step | Hyp | Ref
| Expression |
1 | | zssre 9219 |
. . . 4
⊢ ℤ
⊆ ℝ |
2 | | infssuzledc.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
3 | | infssuzledc.s |
. . . . . . . . . . 11
⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} |
4 | 3 | eleq2i 2237 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓}) |
5 | 2, 4 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓}) |
6 | | elrabi 2883 |
. . . . . . . . 9
⊢ (𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ≥‘𝑀)) |
7 | 5, 6 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘𝑀)) |
8 | | eluzelz 9496 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘𝑀) → 𝐴 ∈ ℤ) |
9 | 7, 8 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) |
10 | 9 | znegcld 9336 |
. . . . . 6
⊢ (𝜑 → -𝐴 ∈ ℤ) |
11 | | negeq 8112 |
. . . . . . 7
⊢ (𝑚 = -𝐴 → -𝑚 = --𝐴) |
12 | 11 | eleq1d 2239 |
. . . . . 6
⊢ (𝑚 = -𝐴 → (-𝑚 ∈ 𝑆 ↔ --𝐴 ∈ 𝑆)) |
13 | 9 | zcnd 9335 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
14 | 13 | negnegd 8221 |
. . . . . . 7
⊢ (𝜑 → --𝐴 = 𝐴) |
15 | 14, 2 | eqeltrd 2247 |
. . . . . 6
⊢ (𝜑 → --𝐴 ∈ 𝑆) |
16 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ≤ -𝑚) |
17 | 9 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝐴 ∈ ℤ) |
18 | 17 | zred 9334 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝐴 ∈ ℝ) |
19 | | eluzelz 9496 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘-𝐴) → 𝑚 ∈ ℤ) |
20 | 19 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝑚 ∈ ℤ) |
21 | 20 | zred 9334 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝑚 ∈ ℝ) |
22 | | eluzle 9499 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(ℤ≥‘-𝐴) → -𝐴 ≤ 𝑚) |
23 | 22 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → -𝐴 ≤ 𝑚) |
24 | 18, 21, 23 | lenegcon1d 8446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → -𝑚 ≤ 𝐴) |
25 | 24 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ≤ 𝐴) |
26 | 16, 25 | jca 304 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (𝑀 ≤ -𝑚 ∧ -𝑚 ≤ 𝐴)) |
27 | 20 | znegcld 9336 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → -𝑚 ∈ ℤ) |
28 | 27 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ ℤ) |
29 | | infssuzledc.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
30 | 29 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ∈ ℤ) |
31 | 9 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝐴 ∈ ℤ) |
32 | | elfz 9971 |
. . . . . . . . . . 11
⊢ ((-𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚 ≤ 𝐴))) |
33 | 28, 30, 31, 32 | syl3anc 1233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚 ≤ 𝐴))) |
34 | 26, 33 | mpbird 166 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (𝑀...𝐴)) |
35 | | infssuzledc.dc |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) |
36 | 35 | ralrimiva 2543 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓) |
37 | 36 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓) |
38 | | nfsbc1v 2973 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛[-𝑚 / 𝑛]𝜓 |
39 | 38 | nfdc 1652 |
. . . . . . . . . 10
⊢
Ⅎ𝑛DECID [-𝑚 / 𝑛]𝜓 |
40 | | sbceq1a 2964 |
. . . . . . . . . . 11
⊢ (𝑛 = -𝑚 → (𝜓 ↔ [-𝑚 / 𝑛]𝜓)) |
41 | 40 | dcbid 833 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑚 → (DECID 𝜓 ↔ DECID [-𝑚 / 𝑛]𝜓)) |
42 | 39, 41 | rspc 2828 |
. . . . . . . . 9
⊢ (-𝑚 ∈ (𝑀...𝐴) → (∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓 → DECID [-𝑚 / 𝑛]𝜓)) |
43 | 34, 37, 42 | sylc 62 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID [-𝑚 / 𝑛]𝜓) |
44 | 3 | eleq2i 2237 |
. . . . . . . . . 10
⊢ (-𝑚 ∈ 𝑆 ↔ -𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓}) |
45 | | nfcv 2312 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(ℤ≥‘𝑀) |
46 | 45 | elrabsf 2993 |
. . . . . . . . . . 11
⊢ (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ↔ (-𝑚 ∈ (ℤ≥‘𝑀) ∧ [-𝑚 / 𝑛]𝜓)) |
47 | | elfzuz 9977 |
. . . . . . . . . . . . 13
⊢ (-𝑚 ∈ (𝑀...𝐴) → -𝑚 ∈ (ℤ≥‘𝑀)) |
48 | 34, 47 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (ℤ≥‘𝑀)) |
49 | 48 | biantrurd 303 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ([-𝑚 / 𝑛]𝜓 ↔ (-𝑚 ∈ (ℤ≥‘𝑀) ∧ [-𝑚 / 𝑛]𝜓))) |
50 | 46, 49 | bitr4id 198 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ↔ [-𝑚 / 𝑛]𝜓)) |
51 | 44, 50 | syl5bb 191 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ 𝑆 ↔ [-𝑚 / 𝑛]𝜓)) |
52 | 51 | dcbid 833 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (DECID -𝑚 ∈ 𝑆 ↔ DECID [-𝑚 / 𝑛]𝜓)) |
53 | 43, 52 | mpbird 166 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID -𝑚 ∈ 𝑆) |
54 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ 𝑀 ≤ -𝑚) |
55 | | elrabi 2883 |
. . . . . . . . . . . 12
⊢ (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → -𝑚 ∈ (ℤ≥‘𝑀)) |
56 | | eluzle 9499 |
. . . . . . . . . . . 12
⊢ (-𝑚 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ -𝑚) |
57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
⊢ (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝑀 ≤ -𝑚) |
58 | 57, 3 | eleq2s 2265 |
. . . . . . . . . 10
⊢ (-𝑚 ∈ 𝑆 → 𝑀 ≤ -𝑚) |
59 | 54, 58 | nsyl 623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ -𝑚 ∈ 𝑆) |
60 | 59 | olcd 729 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → (-𝑚 ∈ 𝑆 ∨ ¬ -𝑚 ∈ 𝑆)) |
61 | | df-dc 830 |
. . . . . . . 8
⊢
(DECID -𝑚 ∈ 𝑆 ↔ (-𝑚 ∈ 𝑆 ∨ ¬ -𝑚 ∈ 𝑆)) |
62 | 60, 61 | sylibr 133 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → DECID -𝑚 ∈ 𝑆) |
63 | 29 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝑀 ∈ ℤ) |
64 | | zdcle 9288 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ -𝑚 ∈ ℤ) →
DECID 𝑀 ≤
-𝑚) |
65 | 63, 27, 64 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → DECID
𝑀 ≤ -𝑚) |
66 | | exmiddc 831 |
. . . . . . . 8
⊢
(DECID 𝑀 ≤ -𝑚 → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚)) |
67 | 65, 66 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚)) |
68 | 53, 62, 67 | mpjaodan 793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → DECID
-𝑚 ∈ 𝑆) |
69 | | eluzle 9499 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝐴) |
70 | 7, 69 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≤ 𝐴) |
71 | 29 | zred 9334 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
72 | 9 | zred 9334 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
73 | 71, 72 | lenegd 8443 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 ≤ 𝐴 ↔ -𝐴 ≤ -𝑀)) |
74 | 70, 73 | mpbid 146 |
. . . . . . . . 9
⊢ (𝜑 → -𝐴 ≤ -𝑀) |
75 | 29 | znegcld 9336 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑀 ∈ ℤ) |
76 | | eluz 9500 |
. . . . . . . . . 10
⊢ ((-𝐴 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 ∈
(ℤ≥‘-𝐴) ↔ -𝐴 ≤ -𝑀)) |
77 | 10, 75, 76 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (-𝑀 ∈ (ℤ≥‘-𝐴) ↔ -𝐴 ≤ -𝑀)) |
78 | 74, 77 | mpbird 166 |
. . . . . . . 8
⊢ (𝜑 → -𝑀 ∈ (ℤ≥‘-𝐴)) |
79 | | peano2uz 9542 |
. . . . . . . 8
⊢ (-𝑀 ∈
(ℤ≥‘-𝐴) → (-𝑀 + 1) ∈
(ℤ≥‘-𝐴)) |
80 | 78, 79 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (-𝑀 + 1) ∈
(ℤ≥‘-𝐴)) |
81 | 71 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑀 ∈ ℝ) |
82 | 81 | renegcld 8299 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → -𝑀 ∈ ℝ) |
83 | | peano2re 8055 |
. . . . . . . . . . . 12
⊢ (-𝑀 ∈ ℝ → (-𝑀 + 1) ∈
ℝ) |
84 | 82, 83 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 + 1) ∈ ℝ) |
85 | | eluzelz 9496 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈
(ℤ≥‘(-𝑀 + 1)) → 𝑚 ∈ ℤ) |
86 | 85 | ad2antlr 486 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑚 ∈ ℤ) |
87 | 86 | zred 9334 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑚 ∈ ℝ) |
88 | | eluzle 9499 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘(-𝑀 + 1)) → (-𝑀 + 1) ≤ 𝑚) |
89 | 88 | ad2antlr 486 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 + 1) ≤ 𝑚) |
90 | 55, 3 | eleq2s 2265 |
. . . . . . . . . . . . . . 15
⊢ (-𝑚 ∈ 𝑆 → -𝑚 ∈ (ℤ≥‘𝑀)) |
91 | 90 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ -𝑚 ∈ 𝑆) → -𝑚 ∈ (ℤ≥‘𝑀)) |
92 | 91, 56 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ -𝑚 ∈ 𝑆) → 𝑀 ≤ -𝑚) |
93 | 92 | adantlr 474 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑀 ≤ -𝑚) |
94 | 81, 87, 93 | lenegcon2d 8447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑚 ≤ -𝑀) |
95 | 84, 87, 82, 89, 94 | letrd 8043 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 + 1) ≤ -𝑀) |
96 | 75 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → -𝑀 ∈ ℤ) |
97 | | zltp1le 9266 |
. . . . . . . . . . 11
⊢ ((-𝑀 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀)) |
98 | 96, 96, 97 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀)) |
99 | 95, 98 | mpbird 166 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → -𝑀 < -𝑀) |
100 | 82 | ltnrd 8031 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → ¬ -𝑀 < -𝑀) |
101 | 99, 100 | pm2.65da 656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) → ¬ -𝑚 ∈ 𝑆) |
102 | 101 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘(-𝑀 + 1)) ¬ -𝑚 ∈ 𝑆) |
103 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑗 = (-𝑀 + 1) →
(ℤ≥‘𝑗) = (ℤ≥‘(-𝑀 + 1))) |
104 | 103 | raleqdv 2671 |
. . . . . . . 8
⊢ (𝑗 = (-𝑀 + 1) → (∀𝑚 ∈ (ℤ≥‘𝑗) ¬ -𝑚 ∈ 𝑆 ↔ ∀𝑚 ∈ (ℤ≥‘(-𝑀 + 1)) ¬ -𝑚 ∈ 𝑆)) |
105 | 104 | rspcev 2834 |
. . . . . . 7
⊢ (((-𝑀 + 1) ∈
(ℤ≥‘-𝐴) ∧ ∀𝑚 ∈ (ℤ≥‘(-𝑀 + 1)) ¬ -𝑚 ∈ 𝑆) → ∃𝑗 ∈ (ℤ≥‘-𝐴)∀𝑚 ∈ (ℤ≥‘𝑗) ¬ -𝑚 ∈ 𝑆) |
106 | 80, 102, 105 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘-𝐴)∀𝑚 ∈ (ℤ≥‘𝑗) ¬ -𝑚 ∈ 𝑆) |
107 | 10, 12, 15, 68, 106 | zsupcllemex 11901 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
108 | | zre 9216 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℝ) |
109 | 108 | anim1i 338 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆) → (𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆)) |
110 | | elrabi 2883 |
. . . . . . . . . . . . . . . . 17
⊢ (-𝑏 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → -𝑏 ∈ (ℤ≥‘𝑀)) |
111 | 110, 3 | eleq2s 2265 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑏 ∈ 𝑆 → -𝑏 ∈ (ℤ≥‘𝑀)) |
112 | | eluzelz 9496 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑏 ∈
(ℤ≥‘𝑀) → -𝑏 ∈ ℤ) |
113 | 111, 112 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (-𝑏 ∈ 𝑆 → -𝑏 ∈ ℤ) |
114 | 113 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → -𝑏 ∈ ℤ) |
115 | | recn 7907 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ℝ → 𝑏 ∈
ℂ) |
116 | | znegclb 9245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ℂ → (𝑏 ∈ ℤ ↔ -𝑏 ∈
ℤ)) |
117 | 115, 116 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ℝ → (𝑏 ∈ ℤ ↔ -𝑏 ∈
ℤ)) |
118 | 117 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ)) |
119 | 114, 118 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → 𝑏 ∈ ℤ) |
120 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → -𝑏 ∈ 𝑆) |
121 | 119, 120 | jca 304 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → (𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆)) |
122 | 109, 121 | impbii 125 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆) ↔ (𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆)) |
123 | | negeq 8112 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑏 → -𝑚 = -𝑏) |
124 | 123 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑏 → (-𝑚 ∈ 𝑆 ↔ -𝑏 ∈ 𝑆)) |
125 | 124 | elrab 2886 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ↔ (𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆)) |
126 | 124 | elrab 2886 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ (𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆)) |
127 | 122, 125,
126 | 3bitr4i 211 |
. . . . . . . . . 10
⊢ (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}) |
128 | 127 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆})) |
129 | 128 | eqrdv 2168 |
. . . . . . . 8
⊢ (𝜑 → {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} = {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}) |
130 | 129 | raleqdv 2671 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦)) |
131 | 129 | rexeqdv 2672 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧 ↔ ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) |
132 | 131 | imbi2d 229 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
133 | 132 | ralbidv 2470 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
134 | 130, 133 | anbi12d 470 |
. . . . . 6
⊢ (𝜑 → ((∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)))) |
135 | 134 | rexbidv 2471 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)))) |
136 | 107, 135 | mpbid 146 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
137 | | ssrexv 3212 |
. . . 4
⊢ (ℤ
⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)))) |
138 | 1, 136, 137 | mpsyl 65 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
139 | | ssrab2 3232 |
. . . 4
⊢ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ⊆ ℝ |
140 | 139 | a1i 9 |
. . 3
⊢ (𝜑 → {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ⊆ ℝ) |
141 | 138, 140 | supinfneg 9554 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦))) |
142 | | elrabi 2883 |
. . . . . . 7
⊢ (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} → 𝑎 ∈ ℝ) |
143 | | elrabi 2883 |
. . . . . . . . 9
⊢ (𝑎 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝑎 ∈ (ℤ≥‘𝑀)) |
144 | 143, 3 | eleq2s 2265 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝑆 → 𝑎 ∈ (ℤ≥‘𝑀)) |
145 | | eluzelre 9497 |
. . . . . . . 8
⊢ (𝑎 ∈
(ℤ≥‘𝑀) → 𝑎 ∈ ℝ) |
146 | 144, 145 | syl 14 |
. . . . . . 7
⊢ (𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ) |
147 | | negeq 8112 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑎 → -𝑤 = -𝑎) |
148 | 147 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑤 = 𝑎 → (-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆})) |
149 | 148 | elrab3 2887 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆})) |
150 | | negeq 8112 |
. . . . . . . . . . 11
⊢ (𝑚 = -𝑎 → -𝑚 = --𝑎) |
151 | 150 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑚 = -𝑎 → (-𝑚 ∈ 𝑆 ↔ --𝑎 ∈ 𝑆)) |
152 | 151 | elrab 2886 |
. . . . . . . . 9
⊢ (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝑆)) |
153 | | renegcl 8180 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℝ → -𝑎 ∈
ℝ) |
154 | 153 | biantrurd 303 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ → (--𝑎 ∈ 𝑆 ↔ (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝑆))) |
155 | 152, 154 | bitr4id 198 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ → (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ --𝑎 ∈ 𝑆)) |
156 | | recn 7907 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℂ) |
157 | 156 | negnegd 8221 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ → --𝑎 = 𝑎) |
158 | 157 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ → (--𝑎 ∈ 𝑆 ↔ 𝑎 ∈ 𝑆)) |
159 | 149, 155,
158 | 3bitrd 213 |
. . . . . . 7
⊢ (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ↔ 𝑎 ∈ 𝑆)) |
160 | 142, 146,
159 | pm5.21nii 699 |
. . . . . 6
⊢ (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ↔ 𝑎 ∈ 𝑆) |
161 | 160 | eqriv 2167 |
. . . . 5
⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} = 𝑆 |
162 | 161 | raleqi 2669 |
. . . 4
⊢
(∀𝑦 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥) |
163 | 161 | rexeqi 2670 |
. . . . . 6
⊢
(∃𝑧 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦 ↔ ∃𝑧 ∈ 𝑆 𝑧 < 𝑦) |
164 | 163 | imbi2i 225 |
. . . . 5
⊢ ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦)) |
165 | 164 | ralbii 2476 |
. . . 4
⊢
(∀𝑦 ∈
ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦)) |
166 | 162, 165 | anbi12i 457 |
. . 3
⊢
((∀𝑦 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
167 | 166 | rexbii 2477 |
. 2
⊢
(∃𝑥 ∈
ℝ (∀𝑦 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
168 | 141, 167 | sylib 121 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |