ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzex GIF version

Theorem infssuzex 11964
Description: Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
Distinct variable groups:   𝑦,𝐴   𝐴,𝑛   𝑛,𝑀   𝑥,𝑆,𝑦,𝑧   𝜑,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦,𝑧,𝑛)   𝐴(𝑥,𝑧)   𝑆(𝑛)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem infssuzex
Dummy variables 𝑗 𝑚 𝑎 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 9274 . . . 4 ℤ ⊆ ℝ
2 infssuzledc.a . . . . . . . . . 10 (𝜑𝐴𝑆)
3 infssuzledc.s . . . . . . . . . . 11 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
43eleq2i 2254 . . . . . . . . . 10 (𝐴𝑆𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓})
52, 4sylib 122 . . . . . . . . 9 (𝜑𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓})
6 elrabi 2902 . . . . . . . . 9 (𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ𝑀))
75, 6syl 14 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ𝑀))
8 eluzelz 9551 . . . . . . . 8 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℤ)
97, 8syl 14 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
109znegcld 9391 . . . . . 6 (𝜑 → -𝐴 ∈ ℤ)
11 negeq 8164 . . . . . . 7 (𝑚 = -𝐴 → -𝑚 = --𝐴)
1211eleq1d 2256 . . . . . 6 (𝑚 = -𝐴 → (-𝑚𝑆 ↔ --𝐴𝑆))
139zcnd 9390 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1413negnegd 8273 . . . . . . 7 (𝜑 → --𝐴 = 𝐴)
1514, 2eqeltrd 2264 . . . . . 6 (𝜑 → --𝐴𝑆)
16 simpr 110 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ≤ -𝑚)
179adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝐴 ∈ ℤ)
1817zred 9389 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝐴 ∈ ℝ)
19 eluzelz 9551 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘-𝐴) → 𝑚 ∈ ℤ)
2019adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝑚 ∈ ℤ)
2120zred 9389 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝑚 ∈ ℝ)
22 eluzle 9554 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘-𝐴) → -𝐴𝑚)
2322adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → -𝐴𝑚)
2418, 21, 23lenegcon1d 8498 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → -𝑚𝐴)
2524adantr 276 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚𝐴)
2616, 25jca 306 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (𝑀 ≤ -𝑚 ∧ -𝑚𝐴))
2720znegcld 9391 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → -𝑚 ∈ ℤ)
2827adantr 276 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ ℤ)
29 infssuzledc.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
3029ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ∈ ℤ)
319ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝐴 ∈ ℤ)
32 elfz 10028 . . . . . . . . . . 11 ((-𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚𝐴)))
3328, 30, 31, 32syl3anc 1248 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚𝐴)))
3426, 33mpbird 167 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (𝑀...𝐴))
35 infssuzledc.dc . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
3635ralrimiva 2560 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓)
3736ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓)
38 nfsbc1v 2993 . . . . . . . . . . 11 𝑛[-𝑚 / 𝑛]𝜓
3938nfdc 1669 . . . . . . . . . 10 𝑛DECID [-𝑚 / 𝑛]𝜓
40 sbceq1a 2984 . . . . . . . . . . 11 (𝑛 = -𝑚 → (𝜓[-𝑚 / 𝑛]𝜓))
4140dcbid 839 . . . . . . . . . 10 (𝑛 = -𝑚 → (DECID 𝜓DECID [-𝑚 / 𝑛]𝜓))
4239, 41rspc 2847 . . . . . . . . 9 (-𝑚 ∈ (𝑀...𝐴) → (∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓DECID [-𝑚 / 𝑛]𝜓))
4334, 37, 42sylc 62 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID [-𝑚 / 𝑛]𝜓)
443eleq2i 2254 . . . . . . . . . 10 (-𝑚𝑆 ↔ -𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓})
45 nfcv 2329 . . . . . . . . . . . 12 𝑛(ℤ𝑀)
4645elrabsf 3013 . . . . . . . . . . 11 (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ↔ (-𝑚 ∈ (ℤ𝑀) ∧ [-𝑚 / 𝑛]𝜓))
47 elfzuz 10035 . . . . . . . . . . . . 13 (-𝑚 ∈ (𝑀...𝐴) → -𝑚 ∈ (ℤ𝑀))
4834, 47syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (ℤ𝑀))
4948biantrurd 305 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ([-𝑚 / 𝑛]𝜓 ↔ (-𝑚 ∈ (ℤ𝑀) ∧ [-𝑚 / 𝑛]𝜓)))
5046, 49bitr4id 199 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ↔ [-𝑚 / 𝑛]𝜓))
5144, 50bitrid 192 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚𝑆[-𝑚 / 𝑛]𝜓))
5251dcbid 839 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (DECID -𝑚𝑆DECID [-𝑚 / 𝑛]𝜓))
5343, 52mpbird 167 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID -𝑚𝑆)
54 simpr 110 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ 𝑀 ≤ -𝑚)
55 elrabi 2902 . . . . . . . . . . . 12 (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → -𝑚 ∈ (ℤ𝑀))
56 eluzle 9554 . . . . . . . . . . . 12 (-𝑚 ∈ (ℤ𝑀) → 𝑀 ≤ -𝑚)
5755, 56syl 14 . . . . . . . . . . 11 (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝑀 ≤ -𝑚)
5857, 3eleq2s 2282 . . . . . . . . . 10 (-𝑚𝑆𝑀 ≤ -𝑚)
5954, 58nsyl 629 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ -𝑚𝑆)
6059olcd 735 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → (-𝑚𝑆 ∨ ¬ -𝑚𝑆))
61 df-dc 836 . . . . . . . 8 (DECID -𝑚𝑆 ↔ (-𝑚𝑆 ∨ ¬ -𝑚𝑆))
6260, 61sylibr 134 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → DECID -𝑚𝑆)
6329adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝑀 ∈ ℤ)
64 zdcle 9343 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ -𝑚 ∈ ℤ) → DECID 𝑀 ≤ -𝑚)
6563, 27, 64syl2anc 411 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → DECID 𝑀 ≤ -𝑚)
66 exmiddc 837 . . . . . . . 8 (DECID 𝑀 ≤ -𝑚 → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚))
6765, 66syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚))
6853, 62, 67mpjaodan 799 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → DECID -𝑚𝑆)
69 eluzle 9554 . . . . . . . . . . 11 (𝐴 ∈ (ℤ𝑀) → 𝑀𝐴)
707, 69syl 14 . . . . . . . . . 10 (𝜑𝑀𝐴)
7129zred 9389 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
729zred 9389 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
7371, 72lenegd 8495 . . . . . . . . . 10 (𝜑 → (𝑀𝐴 ↔ -𝐴 ≤ -𝑀))
7470, 73mpbid 147 . . . . . . . . 9 (𝜑 → -𝐴 ≤ -𝑀)
7529znegcld 9391 . . . . . . . . . 10 (𝜑 → -𝑀 ∈ ℤ)
76 eluz 9555 . . . . . . . . . 10 ((-𝐴 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 ∈ (ℤ‘-𝐴) ↔ -𝐴 ≤ -𝑀))
7710, 75, 76syl2anc 411 . . . . . . . . 9 (𝜑 → (-𝑀 ∈ (ℤ‘-𝐴) ↔ -𝐴 ≤ -𝑀))
7874, 77mpbird 167 . . . . . . . 8 (𝜑 → -𝑀 ∈ (ℤ‘-𝐴))
79 peano2uz 9597 . . . . . . . 8 (-𝑀 ∈ (ℤ‘-𝐴) → (-𝑀 + 1) ∈ (ℤ‘-𝐴))
8078, 79syl 14 . . . . . . 7 (𝜑 → (-𝑀 + 1) ∈ (ℤ‘-𝐴))
8171ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑀 ∈ ℝ)
8281renegcld 8351 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → -𝑀 ∈ ℝ)
83 peano2re 8107 . . . . . . . . . . . 12 (-𝑀 ∈ ℝ → (-𝑀 + 1) ∈ ℝ)
8482, 83syl 14 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 + 1) ∈ ℝ)
85 eluzelz 9551 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘(-𝑀 + 1)) → 𝑚 ∈ ℤ)
8685ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑚 ∈ ℤ)
8786zred 9389 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑚 ∈ ℝ)
88 eluzle 9554 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(-𝑀 + 1)) → (-𝑀 + 1) ≤ 𝑚)
8988ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 + 1) ≤ 𝑚)
9055, 3eleq2s 2282 . . . . . . . . . . . . . . 15 (-𝑚𝑆 → -𝑚 ∈ (ℤ𝑀))
9190adantl 277 . . . . . . . . . . . . . 14 ((𝜑 ∧ -𝑚𝑆) → -𝑚 ∈ (ℤ𝑀))
9291, 56syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ -𝑚𝑆) → 𝑀 ≤ -𝑚)
9392adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑀 ≤ -𝑚)
9481, 87, 93lenegcon2d 8499 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑚 ≤ -𝑀)
9584, 87, 82, 89, 94letrd 8095 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 + 1) ≤ -𝑀)
9675ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → -𝑀 ∈ ℤ)
97 zltp1le 9321 . . . . . . . . . . 11 ((-𝑀 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀))
9896, 96, 97syl2anc 411 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀))
9995, 98mpbird 167 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → -𝑀 < -𝑀)
10082ltnrd 8083 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → ¬ -𝑀 < -𝑀)
10199, 100pm2.65da 662 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) → ¬ -𝑚𝑆)
102101ralrimiva 2560 . . . . . . 7 (𝜑 → ∀𝑚 ∈ (ℤ‘(-𝑀 + 1)) ¬ -𝑚𝑆)
103 fveq2 5527 . . . . . . . . 9 (𝑗 = (-𝑀 + 1) → (ℤ𝑗) = (ℤ‘(-𝑀 + 1)))
104103raleqdv 2689 . . . . . . . 8 (𝑗 = (-𝑀 + 1) → (∀𝑚 ∈ (ℤ𝑗) ¬ -𝑚𝑆 ↔ ∀𝑚 ∈ (ℤ‘(-𝑀 + 1)) ¬ -𝑚𝑆))
105104rspcev 2853 . . . . . . 7 (((-𝑀 + 1) ∈ (ℤ‘-𝐴) ∧ ∀𝑚 ∈ (ℤ‘(-𝑀 + 1)) ¬ -𝑚𝑆) → ∃𝑗 ∈ (ℤ‘-𝐴)∀𝑚 ∈ (ℤ𝑗) ¬ -𝑚𝑆)
10680, 102, 105syl2anc 411 . . . . . 6 (𝜑 → ∃𝑗 ∈ (ℤ‘-𝐴)∀𝑚 ∈ (ℤ𝑗) ¬ -𝑚𝑆)
10710, 12, 15, 68, 106zsupcllemex 11961 . . . . 5 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧)))
108 zre 9271 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
109108anim1i 340 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ -𝑏𝑆) → (𝑏 ∈ ℝ ∧ -𝑏𝑆))
110 elrabi 2902 . . . . . . . . . . . . . . . . 17 (-𝑏 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → -𝑏 ∈ (ℤ𝑀))
111110, 3eleq2s 2282 . . . . . . . . . . . . . . . 16 (-𝑏𝑆 → -𝑏 ∈ (ℤ𝑀))
112 eluzelz 9551 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ (ℤ𝑀) → -𝑏 ∈ ℤ)
113111, 112syl 14 . . . . . . . . . . . . . . 15 (-𝑏𝑆 → -𝑏 ∈ ℤ)
114113adantl 277 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → -𝑏 ∈ ℤ)
115 recn 7958 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
116 znegclb 9300 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℂ → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ))
117115, 116syl 14 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ))
118117adantr 276 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ))
119114, 118mpbird 167 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → 𝑏 ∈ ℤ)
120 simpr 110 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → -𝑏𝑆)
121119, 120jca 306 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → (𝑏 ∈ ℤ ∧ -𝑏𝑆))
122109, 121impbii 126 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ -𝑏𝑆) ↔ (𝑏 ∈ ℝ ∧ -𝑏𝑆))
123 negeq 8164 . . . . . . . . . . . . 13 (𝑚 = 𝑏 → -𝑚 = -𝑏)
124123eleq1d 2256 . . . . . . . . . . . 12 (𝑚 = 𝑏 → (-𝑚𝑆 ↔ -𝑏𝑆))
125124elrab 2905 . . . . . . . . . . 11 (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ↔ (𝑏 ∈ ℤ ∧ -𝑏𝑆))
126124elrab 2905 . . . . . . . . . . 11 (𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ (𝑏 ∈ ℝ ∧ -𝑏𝑆))
127122, 125, 1263bitr4i 212 . . . . . . . . . 10 (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆})
128127a1i 9 . . . . . . . . 9 (𝜑 → (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}))
129128eqrdv 2185 . . . . . . . 8 (𝜑 → {𝑚 ∈ ℤ ∣ -𝑚𝑆} = {𝑚 ∈ ℝ ∣ -𝑚𝑆})
130129raleqdv 2689 . . . . . . 7 (𝜑 → (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦))
131129rexeqdv 2690 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧 ↔ ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))
132131imbi2d 230 . . . . . . . 8 (𝜑 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
133132ralbidv 2487 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
134130, 133anbi12d 473 . . . . . 6 (𝜑 → ((∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))))
135134rexbidv 2488 . . . . 5 (𝜑 → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))))
136107, 135mpbid 147 . . . 4 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
137 ssrexv 3232 . . . 4 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))))
1381, 136, 137mpsyl 65 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
139 ssrab2 3252 . . . 4 {𝑚 ∈ ℝ ∣ -𝑚𝑆} ⊆ ℝ
140139a1i 9 . . 3 (𝜑 → {𝑚 ∈ ℝ ∣ -𝑚𝑆} ⊆ ℝ)
141138, 140supinfneg 9609 . 2 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦)))
142 elrabi 2902 . . . . . . 7 (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} → 𝑎 ∈ ℝ)
143 elrabi 2902 . . . . . . . . 9 (𝑎 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝑎 ∈ (ℤ𝑀))
144143, 3eleq2s 2282 . . . . . . . 8 (𝑎𝑆𝑎 ∈ (ℤ𝑀))
145 eluzelre 9552 . . . . . . . 8 (𝑎 ∈ (ℤ𝑀) → 𝑎 ∈ ℝ)
146144, 145syl 14 . . . . . . 7 (𝑎𝑆𝑎 ∈ ℝ)
147 negeq 8164 . . . . . . . . . 10 (𝑤 = 𝑎 → -𝑤 = -𝑎)
148147eleq1d 2256 . . . . . . . . 9 (𝑤 = 𝑎 → (-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}))
149148elrab3 2906 . . . . . . . 8 (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}))
150 negeq 8164 . . . . . . . . . . 11 (𝑚 = -𝑎 → -𝑚 = --𝑎)
151150eleq1d 2256 . . . . . . . . . 10 (𝑚 = -𝑎 → (-𝑚𝑆 ↔ --𝑎𝑆))
152151elrab 2905 . . . . . . . . 9 (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝑆))
153 renegcl 8232 . . . . . . . . . 10 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
154153biantrurd 305 . . . . . . . . 9 (𝑎 ∈ ℝ → (--𝑎𝑆 ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝑆)))
155152, 154bitr4id 199 . . . . . . . 8 (𝑎 ∈ ℝ → (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ --𝑎𝑆))
156 recn 7958 . . . . . . . . . 10 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
157156negnegd 8273 . . . . . . . . 9 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
158157eleq1d 2256 . . . . . . . 8 (𝑎 ∈ ℝ → (--𝑎𝑆𝑎𝑆))
159149, 155, 1583bitrd 214 . . . . . . 7 (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ↔ 𝑎𝑆))
160142, 146, 159pm5.21nii 705 . . . . . 6 (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ↔ 𝑎𝑆)
161160eqriv 2184 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} = 𝑆
162161raleqi 2687 . . . 4 (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝑆 ¬ 𝑦 < 𝑥)
163161rexeqi 2688 . . . . . 6 (∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦 ↔ ∃𝑧𝑆 𝑧 < 𝑦)
164163imbi2i 226 . . . . 5 ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦))
165164ralbii 2493 . . . 4 (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦))
166162, 165anbi12i 460 . . 3 ((∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦)) ↔ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
167166rexbii 2494 . 2 (∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
168141, 167sylib 122 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1363  wcel 2158  wral 2465  wrex 2466  {crab 2469  [wsbc 2974  wss 3141   class class class wbr 4015  cfv 5228  (class class class)co 5888  cc 7823  cr 7824  1c1 7826   + caddc 7828   < clt 8006  cle 8007  -cneg 8143  cz 9267  cuz 9542  ...cfz 10022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-fz 10023  df-fzo 10157
This theorem is referenced by:  infssuzledc  11965  infssuzcldc  11966  nninfdcex  11968
  Copyright terms: Public domain W3C validator