ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzex GIF version

Theorem infssuzex 11933
Description: Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
Distinct variable groups:   𝑦,𝐴   𝐴,𝑛   𝑛,𝑀   𝑥,𝑆,𝑦,𝑧   𝜑,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦,𝑧,𝑛)   𝐴(𝑥,𝑧)   𝑆(𝑛)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem infssuzex
Dummy variables 𝑗 𝑚 𝑎 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 9249 . . . 4 ℤ ⊆ ℝ
2 infssuzledc.a . . . . . . . . . 10 (𝜑𝐴𝑆)
3 infssuzledc.s . . . . . . . . . . 11 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
43eleq2i 2244 . . . . . . . . . 10 (𝐴𝑆𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓})
52, 4sylib 122 . . . . . . . . 9 (𝜑𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓})
6 elrabi 2890 . . . . . . . . 9 (𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ𝑀))
75, 6syl 14 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ𝑀))
8 eluzelz 9526 . . . . . . . 8 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℤ)
97, 8syl 14 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
109znegcld 9366 . . . . . 6 (𝜑 → -𝐴 ∈ ℤ)
11 negeq 8140 . . . . . . 7 (𝑚 = -𝐴 → -𝑚 = --𝐴)
1211eleq1d 2246 . . . . . 6 (𝑚 = -𝐴 → (-𝑚𝑆 ↔ --𝐴𝑆))
139zcnd 9365 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1413negnegd 8249 . . . . . . 7 (𝜑 → --𝐴 = 𝐴)
1514, 2eqeltrd 2254 . . . . . 6 (𝜑 → --𝐴𝑆)
16 simpr 110 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ≤ -𝑚)
179adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝐴 ∈ ℤ)
1817zred 9364 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝐴 ∈ ℝ)
19 eluzelz 9526 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘-𝐴) → 𝑚 ∈ ℤ)
2019adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝑚 ∈ ℤ)
2120zred 9364 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝑚 ∈ ℝ)
22 eluzle 9529 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘-𝐴) → -𝐴𝑚)
2322adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → -𝐴𝑚)
2418, 21, 23lenegcon1d 8474 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → -𝑚𝐴)
2524adantr 276 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚𝐴)
2616, 25jca 306 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (𝑀 ≤ -𝑚 ∧ -𝑚𝐴))
2720znegcld 9366 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → -𝑚 ∈ ℤ)
2827adantr 276 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ ℤ)
29 infssuzledc.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
3029ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ∈ ℤ)
319ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝐴 ∈ ℤ)
32 elfz 10001 . . . . . . . . . . 11 ((-𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚𝐴)))
3328, 30, 31, 32syl3anc 1238 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚𝐴)))
3426, 33mpbird 167 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (𝑀...𝐴))
35 infssuzledc.dc . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
3635ralrimiva 2550 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓)
3736ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓)
38 nfsbc1v 2981 . . . . . . . . . . 11 𝑛[-𝑚 / 𝑛]𝜓
3938nfdc 1659 . . . . . . . . . 10 𝑛DECID [-𝑚 / 𝑛]𝜓
40 sbceq1a 2972 . . . . . . . . . . 11 (𝑛 = -𝑚 → (𝜓[-𝑚 / 𝑛]𝜓))
4140dcbid 838 . . . . . . . . . 10 (𝑛 = -𝑚 → (DECID 𝜓DECID [-𝑚 / 𝑛]𝜓))
4239, 41rspc 2835 . . . . . . . . 9 (-𝑚 ∈ (𝑀...𝐴) → (∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓DECID [-𝑚 / 𝑛]𝜓))
4334, 37, 42sylc 62 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID [-𝑚 / 𝑛]𝜓)
443eleq2i 2244 . . . . . . . . . 10 (-𝑚𝑆 ↔ -𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓})
45 nfcv 2319 . . . . . . . . . . . 12 𝑛(ℤ𝑀)
4645elrabsf 3001 . . . . . . . . . . 11 (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ↔ (-𝑚 ∈ (ℤ𝑀) ∧ [-𝑚 / 𝑛]𝜓))
47 elfzuz 10007 . . . . . . . . . . . . 13 (-𝑚 ∈ (𝑀...𝐴) → -𝑚 ∈ (ℤ𝑀))
4834, 47syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (ℤ𝑀))
4948biantrurd 305 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ([-𝑚 / 𝑛]𝜓 ↔ (-𝑚 ∈ (ℤ𝑀) ∧ [-𝑚 / 𝑛]𝜓)))
5046, 49bitr4id 199 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ↔ [-𝑚 / 𝑛]𝜓))
5144, 50bitrid 192 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚𝑆[-𝑚 / 𝑛]𝜓))
5251dcbid 838 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (DECID -𝑚𝑆DECID [-𝑚 / 𝑛]𝜓))
5343, 52mpbird 167 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID -𝑚𝑆)
54 simpr 110 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ 𝑀 ≤ -𝑚)
55 elrabi 2890 . . . . . . . . . . . 12 (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → -𝑚 ∈ (ℤ𝑀))
56 eluzle 9529 . . . . . . . . . . . 12 (-𝑚 ∈ (ℤ𝑀) → 𝑀 ≤ -𝑚)
5755, 56syl 14 . . . . . . . . . . 11 (-𝑚 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝑀 ≤ -𝑚)
5857, 3eleq2s 2272 . . . . . . . . . 10 (-𝑚𝑆𝑀 ≤ -𝑚)
5954, 58nsyl 628 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ -𝑚𝑆)
6059olcd 734 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → (-𝑚𝑆 ∨ ¬ -𝑚𝑆))
61 df-dc 835 . . . . . . . 8 (DECID -𝑚𝑆 ↔ (-𝑚𝑆 ∨ ¬ -𝑚𝑆))
6260, 61sylibr 134 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → DECID -𝑚𝑆)
6329adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → 𝑀 ∈ ℤ)
64 zdcle 9318 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ -𝑚 ∈ ℤ) → DECID 𝑀 ≤ -𝑚)
6563, 27, 64syl2anc 411 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → DECID 𝑀 ≤ -𝑚)
66 exmiddc 836 . . . . . . . 8 (DECID 𝑀 ≤ -𝑚 → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚))
6765, 66syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚))
6853, 62, 67mpjaodan 798 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘-𝐴)) → DECID -𝑚𝑆)
69 eluzle 9529 . . . . . . . . . . 11 (𝐴 ∈ (ℤ𝑀) → 𝑀𝐴)
707, 69syl 14 . . . . . . . . . 10 (𝜑𝑀𝐴)
7129zred 9364 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
729zred 9364 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
7371, 72lenegd 8471 . . . . . . . . . 10 (𝜑 → (𝑀𝐴 ↔ -𝐴 ≤ -𝑀))
7470, 73mpbid 147 . . . . . . . . 9 (𝜑 → -𝐴 ≤ -𝑀)
7529znegcld 9366 . . . . . . . . . 10 (𝜑 → -𝑀 ∈ ℤ)
76 eluz 9530 . . . . . . . . . 10 ((-𝐴 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 ∈ (ℤ‘-𝐴) ↔ -𝐴 ≤ -𝑀))
7710, 75, 76syl2anc 411 . . . . . . . . 9 (𝜑 → (-𝑀 ∈ (ℤ‘-𝐴) ↔ -𝐴 ≤ -𝑀))
7874, 77mpbird 167 . . . . . . . 8 (𝜑 → -𝑀 ∈ (ℤ‘-𝐴))
79 peano2uz 9572 . . . . . . . 8 (-𝑀 ∈ (ℤ‘-𝐴) → (-𝑀 + 1) ∈ (ℤ‘-𝐴))
8078, 79syl 14 . . . . . . 7 (𝜑 → (-𝑀 + 1) ∈ (ℤ‘-𝐴))
8171ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑀 ∈ ℝ)
8281renegcld 8327 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → -𝑀 ∈ ℝ)
83 peano2re 8083 . . . . . . . . . . . 12 (-𝑀 ∈ ℝ → (-𝑀 + 1) ∈ ℝ)
8482, 83syl 14 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 + 1) ∈ ℝ)
85 eluzelz 9526 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘(-𝑀 + 1)) → 𝑚 ∈ ℤ)
8685ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑚 ∈ ℤ)
8786zred 9364 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑚 ∈ ℝ)
88 eluzle 9529 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(-𝑀 + 1)) → (-𝑀 + 1) ≤ 𝑚)
8988ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 + 1) ≤ 𝑚)
9055, 3eleq2s 2272 . . . . . . . . . . . . . . 15 (-𝑚𝑆 → -𝑚 ∈ (ℤ𝑀))
9190adantl 277 . . . . . . . . . . . . . 14 ((𝜑 ∧ -𝑚𝑆) → -𝑚 ∈ (ℤ𝑀))
9291, 56syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ -𝑚𝑆) → 𝑀 ≤ -𝑚)
9392adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑀 ≤ -𝑚)
9481, 87, 93lenegcon2d 8475 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → 𝑚 ≤ -𝑀)
9584, 87, 82, 89, 94letrd 8071 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 + 1) ≤ -𝑀)
9675ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → -𝑀 ∈ ℤ)
97 zltp1le 9296 . . . . . . . . . . 11 ((-𝑀 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀))
9896, 96, 97syl2anc 411 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀))
9995, 98mpbird 167 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → -𝑀 < -𝑀)
10082ltnrd 8059 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) ∧ -𝑚𝑆) → ¬ -𝑀 < -𝑀)
10199, 100pm2.65da 661 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(-𝑀 + 1))) → ¬ -𝑚𝑆)
102101ralrimiva 2550 . . . . . . 7 (𝜑 → ∀𝑚 ∈ (ℤ‘(-𝑀 + 1)) ¬ -𝑚𝑆)
103 fveq2 5511 . . . . . . . . 9 (𝑗 = (-𝑀 + 1) → (ℤ𝑗) = (ℤ‘(-𝑀 + 1)))
104103raleqdv 2678 . . . . . . . 8 (𝑗 = (-𝑀 + 1) → (∀𝑚 ∈ (ℤ𝑗) ¬ -𝑚𝑆 ↔ ∀𝑚 ∈ (ℤ‘(-𝑀 + 1)) ¬ -𝑚𝑆))
105104rspcev 2841 . . . . . . 7 (((-𝑀 + 1) ∈ (ℤ‘-𝐴) ∧ ∀𝑚 ∈ (ℤ‘(-𝑀 + 1)) ¬ -𝑚𝑆) → ∃𝑗 ∈ (ℤ‘-𝐴)∀𝑚 ∈ (ℤ𝑗) ¬ -𝑚𝑆)
10680, 102, 105syl2anc 411 . . . . . 6 (𝜑 → ∃𝑗 ∈ (ℤ‘-𝐴)∀𝑚 ∈ (ℤ𝑗) ¬ -𝑚𝑆)
10710, 12, 15, 68, 106zsupcllemex 11930 . . . . 5 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧)))
108 zre 9246 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
109108anim1i 340 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ -𝑏𝑆) → (𝑏 ∈ ℝ ∧ -𝑏𝑆))
110 elrabi 2890 . . . . . . . . . . . . . . . . 17 (-𝑏 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → -𝑏 ∈ (ℤ𝑀))
111110, 3eleq2s 2272 . . . . . . . . . . . . . . . 16 (-𝑏𝑆 → -𝑏 ∈ (ℤ𝑀))
112 eluzelz 9526 . . . . . . . . . . . . . . . 16 (-𝑏 ∈ (ℤ𝑀) → -𝑏 ∈ ℤ)
113111, 112syl 14 . . . . . . . . . . . . . . 15 (-𝑏𝑆 → -𝑏 ∈ ℤ)
114113adantl 277 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → -𝑏 ∈ ℤ)
115 recn 7935 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
116 znegclb 9275 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℂ → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ))
117115, 116syl 14 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℝ → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ))
118117adantr 276 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ))
119114, 118mpbird 167 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → 𝑏 ∈ ℤ)
120 simpr 110 . . . . . . . . . . . . 13 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → -𝑏𝑆)
121119, 120jca 306 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ -𝑏𝑆) → (𝑏 ∈ ℤ ∧ -𝑏𝑆))
122109, 121impbii 126 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ -𝑏𝑆) ↔ (𝑏 ∈ ℝ ∧ -𝑏𝑆))
123 negeq 8140 . . . . . . . . . . . . 13 (𝑚 = 𝑏 → -𝑚 = -𝑏)
124123eleq1d 2246 . . . . . . . . . . . 12 (𝑚 = 𝑏 → (-𝑚𝑆 ↔ -𝑏𝑆))
125124elrab 2893 . . . . . . . . . . 11 (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ↔ (𝑏 ∈ ℤ ∧ -𝑏𝑆))
126124elrab 2893 . . . . . . . . . . 11 (𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ (𝑏 ∈ ℝ ∧ -𝑏𝑆))
127122, 125, 1263bitr4i 212 . . . . . . . . . 10 (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆})
128127a1i 9 . . . . . . . . 9 (𝜑 → (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}))
129128eqrdv 2175 . . . . . . . 8 (𝜑 → {𝑚 ∈ ℤ ∣ -𝑚𝑆} = {𝑚 ∈ ℝ ∣ -𝑚𝑆})
130129raleqdv 2678 . . . . . . 7 (𝜑 → (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦))
131129rexeqdv 2679 . . . . . . . . 9 (𝜑 → (∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧 ↔ ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))
132131imbi2d 230 . . . . . . . 8 (𝜑 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
133132ralbidv 2477 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
134130, 133anbi12d 473 . . . . . 6 (𝜑 → ((∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))))
135134rexbidv 2478 . . . . 5 (𝜑 → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚𝑆}𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))))
136107, 135mpbid 147 . . . 4 (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
137 ssrexv 3220 . . . 4 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧))))
1381, 136, 137mpsyl 65 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}𝑦 < 𝑧)))
139 ssrab2 3240 . . . 4 {𝑚 ∈ ℝ ∣ -𝑚𝑆} ⊆ ℝ
140139a1i 9 . . 3 (𝜑 → {𝑚 ∈ ℝ ∣ -𝑚𝑆} ⊆ ℝ)
141138, 140supinfneg 9584 . 2 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦)))
142 elrabi 2890 . . . . . . 7 (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} → 𝑎 ∈ ℝ)
143 elrabi 2890 . . . . . . . . 9 (𝑎 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝑎 ∈ (ℤ𝑀))
144143, 3eleq2s 2272 . . . . . . . 8 (𝑎𝑆𝑎 ∈ (ℤ𝑀))
145 eluzelre 9527 . . . . . . . 8 (𝑎 ∈ (ℤ𝑀) → 𝑎 ∈ ℝ)
146144, 145syl 14 . . . . . . 7 (𝑎𝑆𝑎 ∈ ℝ)
147 negeq 8140 . . . . . . . . . 10 (𝑤 = 𝑎 → -𝑤 = -𝑎)
148147eleq1d 2246 . . . . . . . . 9 (𝑤 = 𝑎 → (-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}))
149148elrab3 2894 . . . . . . . 8 (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}))
150 negeq 8140 . . . . . . . . . . 11 (𝑚 = -𝑎 → -𝑚 = --𝑎)
151150eleq1d 2246 . . . . . . . . . 10 (𝑚 = -𝑎 → (-𝑚𝑆 ↔ --𝑎𝑆))
152151elrab 2893 . . . . . . . . 9 (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝑆))
153 renegcl 8208 . . . . . . . . . 10 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
154153biantrurd 305 . . . . . . . . 9 (𝑎 ∈ ℝ → (--𝑎𝑆 ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝑆)))
155152, 154bitr4id 199 . . . . . . . 8 (𝑎 ∈ ℝ → (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆} ↔ --𝑎𝑆))
156 recn 7935 . . . . . . . . . 10 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
157156negnegd 8249 . . . . . . . . 9 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
158157eleq1d 2246 . . . . . . . 8 (𝑎 ∈ ℝ → (--𝑎𝑆𝑎𝑆))
159149, 155, 1583bitrd 214 . . . . . . 7 (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ↔ 𝑎𝑆))
160142, 146, 159pm5.21nii 704 . . . . . 6 (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ↔ 𝑎𝑆)
161160eqriv 2174 . . . . 5 {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} = 𝑆
162161raleqi 2676 . . . 4 (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝑆 ¬ 𝑦 < 𝑥)
163161rexeqi 2677 . . . . . 6 (∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦 ↔ ∃𝑧𝑆 𝑧 < 𝑦)
164163imbi2i 226 . . . . 5 ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦))
165164ralbii 2483 . . . 4 (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦))
166162, 165anbi12i 460 . . 3 ((∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦)) ↔ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
167166rexbii 2484 . 2 (∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚𝑆}}𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
168141, 167sylib 122 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  [wsbc 2962  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  1c1 7803   + caddc 7805   < clt 7982  cle 7983  -cneg 8119  cz 9242  cuz 9517  ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  infssuzledc  11934  infssuzcldc  11935  nninfdcex  11937
  Copyright terms: Public domain W3C validator