| Step | Hyp | Ref
| Expression |
| 1 | | zssre 9350 |
. . . 4
⊢ ℤ
⊆ ℝ |
| 2 | | infssuzledc.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 3 | | infssuzledc.s |
. . . . . . . . . . 11
⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} |
| 4 | 3 | eleq2i 2263 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 ↔ 𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓}) |
| 5 | 2, 4 | sylib 122 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓}) |
| 6 | | elrabi 2917 |
. . . . . . . . 9
⊢ (𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ≥‘𝑀)) |
| 7 | 5, 6 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘𝑀)) |
| 8 | | eluzelz 9627 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘𝑀) → 𝐴 ∈ ℤ) |
| 9 | 7, 8 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 10 | 9 | znegcld 9467 |
. . . . . 6
⊢ (𝜑 → -𝐴 ∈ ℤ) |
| 11 | | negeq 8236 |
. . . . . . 7
⊢ (𝑚 = -𝐴 → -𝑚 = --𝐴) |
| 12 | 11 | eleq1d 2265 |
. . . . . 6
⊢ (𝑚 = -𝐴 → (-𝑚 ∈ 𝑆 ↔ --𝐴 ∈ 𝑆)) |
| 13 | 9 | zcnd 9466 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 14 | 13 | negnegd 8345 |
. . . . . . 7
⊢ (𝜑 → --𝐴 = 𝐴) |
| 15 | 14, 2 | eqeltrd 2273 |
. . . . . 6
⊢ (𝜑 → --𝐴 ∈ 𝑆) |
| 16 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ≤ -𝑚) |
| 17 | 9 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝐴 ∈ ℤ) |
| 18 | 17 | zred 9465 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝐴 ∈ ℝ) |
| 19 | | eluzelz 9627 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘-𝐴) → 𝑚 ∈ ℤ) |
| 20 | 19 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝑚 ∈ ℤ) |
| 21 | 20 | zred 9465 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝑚 ∈ ℝ) |
| 22 | | eluzle 9630 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(ℤ≥‘-𝐴) → -𝐴 ≤ 𝑚) |
| 23 | 22 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → -𝐴 ≤ 𝑚) |
| 24 | 18, 21, 23 | lenegcon1d 8571 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → -𝑚 ≤ 𝐴) |
| 25 | 24 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ≤ 𝐴) |
| 26 | 16, 25 | jca 306 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (𝑀 ≤ -𝑚 ∧ -𝑚 ≤ 𝐴)) |
| 27 | 20 | znegcld 9467 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → -𝑚 ∈ ℤ) |
| 28 | 27 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ ℤ) |
| 29 | | infssuzledc.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 30 | 29 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝑀 ∈ ℤ) |
| 31 | 9 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → 𝐴 ∈ ℤ) |
| 32 | | elfz 10106 |
. . . . . . . . . . 11
⊢ ((-𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚 ≤ 𝐴))) |
| 33 | 28, 30, 31, 32 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ (𝑀...𝐴) ↔ (𝑀 ≤ -𝑚 ∧ -𝑚 ≤ 𝐴))) |
| 34 | 26, 33 | mpbird 167 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (𝑀...𝐴)) |
| 35 | | infssuzledc.dc |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) |
| 36 | 35 | ralrimiva 2570 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓) |
| 37 | 36 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓) |
| 38 | | nfsbc1v 3008 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛[-𝑚 / 𝑛]𝜓 |
| 39 | 38 | nfdc 1673 |
. . . . . . . . . 10
⊢
Ⅎ𝑛DECID [-𝑚 / 𝑛]𝜓 |
| 40 | | sbceq1a 2999 |
. . . . . . . . . . 11
⊢ (𝑛 = -𝑚 → (𝜓 ↔ [-𝑚 / 𝑛]𝜓)) |
| 41 | 40 | dcbid 839 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑚 → (DECID 𝜓 ↔ DECID [-𝑚 / 𝑛]𝜓)) |
| 42 | 39, 41 | rspc 2862 |
. . . . . . . . 9
⊢ (-𝑚 ∈ (𝑀...𝐴) → (∀𝑛 ∈ (𝑀...𝐴)DECID 𝜓 → DECID [-𝑚 / 𝑛]𝜓)) |
| 43 | 34, 37, 42 | sylc 62 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID [-𝑚 / 𝑛]𝜓) |
| 44 | 3 | eleq2i 2263 |
. . . . . . . . . 10
⊢ (-𝑚 ∈ 𝑆 ↔ -𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓}) |
| 45 | | nfcv 2339 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(ℤ≥‘𝑀) |
| 46 | 45 | elrabsf 3028 |
. . . . . . . . . . 11
⊢ (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ↔ (-𝑚 ∈ (ℤ≥‘𝑀) ∧ [-𝑚 / 𝑛]𝜓)) |
| 47 | | elfzuz 10113 |
. . . . . . . . . . . . 13
⊢ (-𝑚 ∈ (𝑀...𝐴) → -𝑚 ∈ (ℤ≥‘𝑀)) |
| 48 | 34, 47 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → -𝑚 ∈ (ℤ≥‘𝑀)) |
| 49 | 48 | biantrurd 305 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → ([-𝑚 / 𝑛]𝜓 ↔ (-𝑚 ∈ (ℤ≥‘𝑀) ∧ [-𝑚 / 𝑛]𝜓))) |
| 50 | 46, 49 | bitr4id 199 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ↔ [-𝑚 / 𝑛]𝜓)) |
| 51 | 44, 50 | bitrid 192 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (-𝑚 ∈ 𝑆 ↔ [-𝑚 / 𝑛]𝜓)) |
| 52 | 51 | dcbid 839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → (DECID -𝑚 ∈ 𝑆 ↔ DECID [-𝑚 / 𝑛]𝜓)) |
| 53 | 43, 52 | mpbird 167 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ 𝑀 ≤ -𝑚) → DECID -𝑚 ∈ 𝑆) |
| 54 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ 𝑀 ≤ -𝑚) |
| 55 | | elrabi 2917 |
. . . . . . . . . . . 12
⊢ (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → -𝑚 ∈ (ℤ≥‘𝑀)) |
| 56 | | eluzle 9630 |
. . . . . . . . . . . 12
⊢ (-𝑚 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ -𝑚) |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
⊢ (-𝑚 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝑀 ≤ -𝑚) |
| 58 | 57, 3 | eleq2s 2291 |
. . . . . . . . . 10
⊢ (-𝑚 ∈ 𝑆 → 𝑀 ≤ -𝑚) |
| 59 | 54, 58 | nsyl 629 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → ¬ -𝑚 ∈ 𝑆) |
| 60 | 59 | olcd 735 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → (-𝑚 ∈ 𝑆 ∨ ¬ -𝑚 ∈ 𝑆)) |
| 61 | | df-dc 836 |
. . . . . . . 8
⊢
(DECID -𝑚 ∈ 𝑆 ↔ (-𝑚 ∈ 𝑆 ∨ ¬ -𝑚 ∈ 𝑆)) |
| 62 | 60, 61 | sylibr 134 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) ∧ ¬ 𝑀 ≤ -𝑚) → DECID -𝑚 ∈ 𝑆) |
| 63 | 29 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → 𝑀 ∈ ℤ) |
| 64 | | zdcle 9419 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ -𝑚 ∈ ℤ) →
DECID 𝑀 ≤
-𝑚) |
| 65 | 63, 27, 64 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → DECID
𝑀 ≤ -𝑚) |
| 66 | | exmiddc 837 |
. . . . . . . 8
⊢
(DECID 𝑀 ≤ -𝑚 → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚)) |
| 67 | 65, 66 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → (𝑀 ≤ -𝑚 ∨ ¬ 𝑀 ≤ -𝑚)) |
| 68 | 53, 62, 67 | mpjaodan 799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘-𝐴)) → DECID
-𝑚 ∈ 𝑆) |
| 69 | | eluzle 9630 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝐴) |
| 70 | 7, 69 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≤ 𝐴) |
| 71 | 29 | zred 9465 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 72 | 9 | zred 9465 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 73 | 71, 72 | lenegd 8568 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 ≤ 𝐴 ↔ -𝐴 ≤ -𝑀)) |
| 74 | 70, 73 | mpbid 147 |
. . . . . . . . 9
⊢ (𝜑 → -𝐴 ≤ -𝑀) |
| 75 | 29 | znegcld 9467 |
. . . . . . . . . 10
⊢ (𝜑 → -𝑀 ∈ ℤ) |
| 76 | | eluz 9631 |
. . . . . . . . . 10
⊢ ((-𝐴 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 ∈
(ℤ≥‘-𝐴) ↔ -𝐴 ≤ -𝑀)) |
| 77 | 10, 75, 76 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (-𝑀 ∈ (ℤ≥‘-𝐴) ↔ -𝐴 ≤ -𝑀)) |
| 78 | 74, 77 | mpbird 167 |
. . . . . . . 8
⊢ (𝜑 → -𝑀 ∈ (ℤ≥‘-𝐴)) |
| 79 | | peano2uz 9674 |
. . . . . . . 8
⊢ (-𝑀 ∈
(ℤ≥‘-𝐴) → (-𝑀 + 1) ∈
(ℤ≥‘-𝐴)) |
| 80 | 78, 79 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (-𝑀 + 1) ∈
(ℤ≥‘-𝐴)) |
| 81 | 71 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 82 | 81 | renegcld 8423 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → -𝑀 ∈ ℝ) |
| 83 | | peano2re 8179 |
. . . . . . . . . . . 12
⊢ (-𝑀 ∈ ℝ → (-𝑀 + 1) ∈
ℝ) |
| 84 | 82, 83 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 + 1) ∈ ℝ) |
| 85 | | eluzelz 9627 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈
(ℤ≥‘(-𝑀 + 1)) → 𝑚 ∈ ℤ) |
| 86 | 85 | ad2antlr 489 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑚 ∈ ℤ) |
| 87 | 86 | zred 9465 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑚 ∈ ℝ) |
| 88 | | eluzle 9630 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘(-𝑀 + 1)) → (-𝑀 + 1) ≤ 𝑚) |
| 89 | 88 | ad2antlr 489 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 + 1) ≤ 𝑚) |
| 90 | 55, 3 | eleq2s 2291 |
. . . . . . . . . . . . . . 15
⊢ (-𝑚 ∈ 𝑆 → -𝑚 ∈ (ℤ≥‘𝑀)) |
| 91 | 90 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ -𝑚 ∈ 𝑆) → -𝑚 ∈ (ℤ≥‘𝑀)) |
| 92 | 91, 56 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ -𝑚 ∈ 𝑆) → 𝑀 ≤ -𝑚) |
| 93 | 92 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑀 ≤ -𝑚) |
| 94 | 81, 87, 93 | lenegcon2d 8572 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → 𝑚 ≤ -𝑀) |
| 95 | 84, 87, 82, 89, 94 | letrd 8167 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 + 1) ≤ -𝑀) |
| 96 | 75 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → -𝑀 ∈ ℤ) |
| 97 | | zltp1le 9397 |
. . . . . . . . . . 11
⊢ ((-𝑀 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀)) |
| 98 | 96, 96, 97 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → (-𝑀 < -𝑀 ↔ (-𝑀 + 1) ≤ -𝑀)) |
| 99 | 95, 98 | mpbird 167 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → -𝑀 < -𝑀) |
| 100 | 82 | ltnrd 8155 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) ∧ -𝑚 ∈ 𝑆) → ¬ -𝑀 < -𝑀) |
| 101 | 99, 100 | pm2.65da 662 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(-𝑀 + 1))) → ¬ -𝑚 ∈ 𝑆) |
| 102 | 101 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘(-𝑀 + 1)) ¬ -𝑚 ∈ 𝑆) |
| 103 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑗 = (-𝑀 + 1) →
(ℤ≥‘𝑗) = (ℤ≥‘(-𝑀 + 1))) |
| 104 | 103 | raleqdv 2699 |
. . . . . . . 8
⊢ (𝑗 = (-𝑀 + 1) → (∀𝑚 ∈ (ℤ≥‘𝑗) ¬ -𝑚 ∈ 𝑆 ↔ ∀𝑚 ∈ (ℤ≥‘(-𝑀 + 1)) ¬ -𝑚 ∈ 𝑆)) |
| 105 | 104 | rspcev 2868 |
. . . . . . 7
⊢ (((-𝑀 + 1) ∈
(ℤ≥‘-𝐴) ∧ ∀𝑚 ∈ (ℤ≥‘(-𝑀 + 1)) ¬ -𝑚 ∈ 𝑆) → ∃𝑗 ∈ (ℤ≥‘-𝐴)∀𝑚 ∈ (ℤ≥‘𝑗) ¬ -𝑚 ∈ 𝑆) |
| 106 | 80, 102, 105 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘-𝐴)∀𝑚 ∈ (ℤ≥‘𝑗) ¬ -𝑚 ∈ 𝑆) |
| 107 | 10, 12, 15, 68, 106 | zsupcllemex 10337 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
| 108 | | zre 9347 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℤ → 𝑏 ∈
ℝ) |
| 109 | 108 | anim1i 340 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆) → (𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆)) |
| 110 | | elrabi 2917 |
. . . . . . . . . . . . . . . . 17
⊢ (-𝑏 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → -𝑏 ∈ (ℤ≥‘𝑀)) |
| 111 | 110, 3 | eleq2s 2291 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑏 ∈ 𝑆 → -𝑏 ∈ (ℤ≥‘𝑀)) |
| 112 | | eluzelz 9627 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑏 ∈
(ℤ≥‘𝑀) → -𝑏 ∈ ℤ) |
| 113 | 111, 112 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (-𝑏 ∈ 𝑆 → -𝑏 ∈ ℤ) |
| 114 | 113 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → -𝑏 ∈ ℤ) |
| 115 | | recn 8029 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ℝ → 𝑏 ∈
ℂ) |
| 116 | | znegclb 9376 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ℂ → (𝑏 ∈ ℤ ↔ -𝑏 ∈
ℤ)) |
| 117 | 115, 116 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ℝ → (𝑏 ∈ ℤ ↔ -𝑏 ∈
ℤ)) |
| 118 | 117 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → (𝑏 ∈ ℤ ↔ -𝑏 ∈ ℤ)) |
| 119 | 114, 118 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → 𝑏 ∈ ℤ) |
| 120 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → -𝑏 ∈ 𝑆) |
| 121 | 119, 120 | jca 306 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆) → (𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆)) |
| 122 | 109, 121 | impbii 126 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆) ↔ (𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆)) |
| 123 | | negeq 8236 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑏 → -𝑚 = -𝑏) |
| 124 | 123 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑏 → (-𝑚 ∈ 𝑆 ↔ -𝑏 ∈ 𝑆)) |
| 125 | 124 | elrab 2920 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ↔ (𝑏 ∈ ℤ ∧ -𝑏 ∈ 𝑆)) |
| 126 | 124 | elrab 2920 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ (𝑏 ∈ ℝ ∧ -𝑏 ∈ 𝑆)) |
| 127 | 122, 125,
126 | 3bitr4i 212 |
. . . . . . . . . 10
⊢ (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}) |
| 128 | 127 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ↔ 𝑏 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆})) |
| 129 | 128 | eqrdv 2194 |
. . . . . . . 8
⊢ (𝜑 → {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} = {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}) |
| 130 | 129 | raleqdv 2699 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦)) |
| 131 | 129 | rexeqdv 2700 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧 ↔ ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) |
| 132 | 131 | imbi2d 230 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
| 133 | 132 | ralbidv 2497 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
| 134 | 130, 133 | anbi12d 473 |
. . . . . 6
⊢ (𝜑 → ((∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)))) |
| 135 | 134 | rexbidv 2498 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℤ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)))) |
| 136 | 107, 135 | mpbid 147 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
| 137 | | ssrexv 3249 |
. . . 4
⊢ (ℤ
⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧)))) |
| 138 | 1, 136, 137 | mpsyl 65 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}𝑦 < 𝑧))) |
| 139 | | ssrab2 3269 |
. . . 4
⊢ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ⊆ ℝ |
| 140 | 139 | a1i 9 |
. . 3
⊢ (𝜑 → {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ⊆ ℝ) |
| 141 | 138, 140 | supinfneg 9686 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦))) |
| 142 | | elrabi 2917 |
. . . . . . 7
⊢ (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} → 𝑎 ∈ ℝ) |
| 143 | | elrabi 2917 |
. . . . . . . . 9
⊢ (𝑎 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝑎 ∈ (ℤ≥‘𝑀)) |
| 144 | 143, 3 | eleq2s 2291 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝑆 → 𝑎 ∈ (ℤ≥‘𝑀)) |
| 145 | | eluzelre 9628 |
. . . . . . . 8
⊢ (𝑎 ∈
(ℤ≥‘𝑀) → 𝑎 ∈ ℝ) |
| 146 | 144, 145 | syl 14 |
. . . . . . 7
⊢ (𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ) |
| 147 | | negeq 8236 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑎 → -𝑤 = -𝑎) |
| 148 | 147 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑤 = 𝑎 → (-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆})) |
| 149 | 148 | elrab3 2921 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ↔ -𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆})) |
| 150 | | negeq 8236 |
. . . . . . . . . . 11
⊢ (𝑚 = -𝑎 → -𝑚 = --𝑎) |
| 151 | 150 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑚 = -𝑎 → (-𝑚 ∈ 𝑆 ↔ --𝑎 ∈ 𝑆)) |
| 152 | 151 | elrab 2920 |
. . . . . . . . 9
⊢ (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝑆)) |
| 153 | | renegcl 8304 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℝ → -𝑎 ∈
ℝ) |
| 154 | 153 | biantrurd 305 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ → (--𝑎 ∈ 𝑆 ↔ (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝑆))) |
| 155 | 152, 154 | bitr4id 199 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ → (-𝑎 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆} ↔ --𝑎 ∈ 𝑆)) |
| 156 | | recn 8029 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℂ) |
| 157 | 156 | negnegd 8345 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ → --𝑎 = 𝑎) |
| 158 | 157 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ → (--𝑎 ∈ 𝑆 ↔ 𝑎 ∈ 𝑆)) |
| 159 | 149, 155,
158 | 3bitrd 214 |
. . . . . . 7
⊢ (𝑎 ∈ ℝ → (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ↔ 𝑎 ∈ 𝑆)) |
| 160 | 142, 146,
159 | pm5.21nii 705 |
. . . . . 6
⊢ (𝑎 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ↔ 𝑎 ∈ 𝑆) |
| 161 | 160 | eqriv 2193 |
. . . . 5
⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} = 𝑆 |
| 162 | 161 | raleqi 2697 |
. . . 4
⊢
(∀𝑦 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥) |
| 163 | 161 | rexeqi 2698 |
. . . . . 6
⊢
(∃𝑧 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦 ↔ ∃𝑧 ∈ 𝑆 𝑧 < 𝑦) |
| 164 | 163 | imbi2i 226 |
. . . . 5
⊢ ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦)) |
| 165 | 164 | ralbii 2503 |
. . . 4
⊢
(∀𝑦 ∈
ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦)) |
| 166 | 162, 165 | anbi12i 460 |
. . 3
⊢
((∀𝑦 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
| 167 | 166 | rexbii 2504 |
. 2
⊢
(∃𝑥 ∈
ℝ (∀𝑦 ∈
{𝑤 ∈ ℝ ∣
-𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ {𝑚 ∈ ℝ ∣ -𝑚 ∈ 𝑆}}𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
| 168 | 141, 167 | sylib 122 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |