ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfirab GIF version

Theorem ssfirab 6990
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
Hypotheses
Ref Expression
ssfirab.a (𝜑𝐴 ∈ Fin)
ssfirab.dc (𝜑 → ∀𝑥𝐴 DECID 𝜓)
Assertion
Ref Expression
ssfirab (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ssfirab
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2752 . . 3 (𝑤 = ∅ → {𝑥𝑤𝜓} = {𝑥 ∈ ∅ ∣ 𝜓})
21eleq1d 2262 . 2 (𝑤 = ∅ → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin))
3 rabeq 2752 . . 3 (𝑤 = 𝑦 → {𝑥𝑤𝜓} = {𝑥𝑦𝜓})
43eleq1d 2262 . 2 (𝑤 = 𝑦 → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥𝑦𝜓} ∈ Fin))
5 rabeq 2752 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥𝑤𝜓} = {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓})
65eleq1d 2262 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin))
7 rabeq 2752 . . 3 (𝑤 = 𝐴 → {𝑥𝑤𝜓} = {𝑥𝐴𝜓})
87eleq1d 2262 . 2 (𝑤 = 𝐴 → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥𝐴𝜓} ∈ Fin))
9 rab0 3475 . . . 4 {𝑥 ∈ ∅ ∣ 𝜓} = ∅
10 0fin 6940 . . . 4 ∅ ∈ Fin
119, 10eqeltri 2266 . . 3 {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin
1211a1i 9 . 2 (𝜑 → {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin)
13 rabun2 3438 . . . . 5 {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓})
14 sbsbc 2989 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)
15 vex 2763 . . . . . . . . . . 11 𝑧 ∈ V
16 ralsns 3656 . . . . . . . . . . 11 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜓[𝑧 / 𝑥]𝜓))
1715, 16ax-mp 5 . . . . . . . . . 10 (∀𝑥 ∈ {𝑧}𝜓[𝑧 / 𝑥]𝜓)
1814, 17bitr4i 187 . . . . . . . . 9 ([𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧}𝜓)
19 rabid2 2671 . . . . . . . . 9 ({𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓} ↔ ∀𝑥 ∈ {𝑧}𝜓)
2018, 19sylbb2 138 . . . . . . . 8 ([𝑧 / 𝑥]𝜓 → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓})
2120adantl 277 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓})
2221uneq2d 3313 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑧}) = ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}))
23 simplr 528 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥𝑦𝜓} ∈ Fin)
2415a1i 9 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ V)
25 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2625ad2antrr 488 . . . . . . . . 9 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ (𝐴𝑦))
2726eldifbd 3165 . . . . . . . 8 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧𝑦)
28 elrabi 2913 . . . . . . . 8 (𝑧 ∈ {𝑥𝑦𝜓} → 𝑧𝑦)
2927, 28nsyl 629 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ {𝑥𝑦𝜓})
30 unsnfi 6975 . . . . . . 7 (({𝑥𝑦𝜓} ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ {𝑥𝑦𝜓}) → ({𝑥𝑦𝜓} ∪ {𝑧}) ∈ Fin)
3123, 24, 29, 30syl3anc 1249 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑧}) ∈ Fin)
3222, 31eqeltrrd 2271 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) ∈ Fin)
3313, 32eqeltrid 2280 . . . 4 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
34 ralsns 3656 . . . . . . . . . . . 12 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓))
3515, 34ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ {𝑧} ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓)
36 sbsbc 2989 . . . . . . . . . . 11 ([𝑧 / 𝑥] ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓)
37 sbn 1968 . . . . . . . . . . 11 ([𝑧 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑧 / 𝑥]𝜓)
3835, 36, 373bitr2ri 209 . . . . . . . . . 10 (¬ [𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓)
39 rabeq0 3476 . . . . . . . . . 10 ({𝑥 ∈ {𝑧} ∣ 𝜓} = ∅ ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓)
4038, 39sylbb2 138 . . . . . . . . 9 (¬ [𝑧 / 𝑥]𝜓 → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅)
4140adantl 277 . . . . . . . 8 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅)
4241uneq2d 3313 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = ({𝑥𝑦𝜓} ∪ ∅))
43 un0 3480 . . . . . . 7 ({𝑥𝑦𝜓} ∪ ∅) = {𝑥𝑦𝜓}
4442, 43eqtrdi 2242 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = {𝑥𝑦𝜓})
4513, 44eqtrid 2238 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = {𝑥𝑦𝜓})
46 simplr 528 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥𝑦𝜓} ∈ Fin)
4745, 46eqeltrd 2270 . . . 4 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
48 simplrr 536 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
4948eldifad 3164 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → 𝑧𝐴)
50 ssfirab.dc . . . . . . 7 (𝜑 → ∀𝑥𝐴 DECID 𝜓)
5150ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → ∀𝑥𝐴 DECID 𝜓)
52 nfs1v 1955 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜓
5352nfdc 1670 . . . . . . 7 𝑥DECID [𝑧 / 𝑥]𝜓
54 sbequ12 1782 . . . . . . . 8 (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓))
5554dcbid 839 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝜓DECID [𝑧 / 𝑥]𝜓))
5653, 55rspc 2858 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜓DECID [𝑧 / 𝑥]𝜓))
5749, 51, 56sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → DECID [𝑧 / 𝑥]𝜓)
58 exmiddc 837 . . . . 5 (DECID [𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓))
5957, 58syl 14 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓))
6033, 47, 59mpjaodan 799 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
6160ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑥𝑦𝜓} ∈ Fin → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin))
62 ssfirab.a . 2 (𝜑𝐴 ∈ Fin)
632, 4, 6, 8, 12, 61, 62findcard2sd 6948 1 (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  [wsb 1773  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  [wsbc 2985  cdif 3150  cun 3151  wss 3153  c0 3446  {csn 3618  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  ssfidc  6991  phivalfi  12350  hashdvds  12359  phiprmpw  12360  phimullem  12363  hashgcdeq  12377  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator