| Step | Hyp | Ref
 | Expression | 
| 1 |   | rabeq 2755 | 
. . 3
⊢ (𝑤 = ∅ → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ ∅ ∣ 𝜓}) | 
| 2 | 1 | eleq1d 2265 | 
. 2
⊢ (𝑤 = ∅ → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin)) | 
| 3 |   | rabeq 2755 | 
. . 3
⊢ (𝑤 = 𝑦 → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ 𝑦 ∣ 𝜓}) | 
| 4 | 3 | eleq1d 2265 | 
. 2
⊢ (𝑤 = 𝑦 → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin)) | 
| 5 |   | rabeq 2755 | 
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓}) | 
| 6 | 5 | eleq1d 2265 | 
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)) | 
| 7 |   | rabeq 2755 | 
. . 3
⊢ (𝑤 = 𝐴 → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 8 | 7 | eleq1d 2265 | 
. 2
⊢ (𝑤 = 𝐴 → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin)) | 
| 9 |   | rab0 3479 | 
. . . 4
⊢ {𝑥 ∈ ∅ ∣ 𝜓} = ∅ | 
| 10 |   | 0fin 6945 | 
. . . 4
⊢ ∅
∈ Fin | 
| 11 | 9, 10 | eqeltri 2269 | 
. . 3
⊢ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin | 
| 12 | 11 | a1i 9 | 
. 2
⊢ (𝜑 → {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin) | 
| 13 |   | rabun2 3442 | 
. . . . 5
⊢ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) | 
| 14 |   | sbsbc 2993 | 
. . . . . . . . . 10
⊢ ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]𝜓) | 
| 15 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 16 |   | ralsns 3660 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜓 ↔ [𝑧 / 𝑥]𝜓)) | 
| 17 | 15, 16 | ax-mp 5 | 
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑧}𝜓 ↔ [𝑧 / 𝑥]𝜓) | 
| 18 | 14, 17 | bitr4i 187 | 
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧}𝜓) | 
| 19 |   | rabid2 2674 | 
. . . . . . . . 9
⊢ ({𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓} ↔ ∀𝑥 ∈ {𝑧}𝜓) | 
| 20 | 18, 19 | sylbb2 138 | 
. . . . . . . 8
⊢ ([𝑧 / 𝑥]𝜓 → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓}) | 
| 21 | 20 | adantl 277 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓}) | 
| 22 | 21 | uneq2d 3317 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓})) | 
| 23 |   | simplr 528 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) | 
| 24 | 15 | a1i 9 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ V) | 
| 25 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 26 | 25 | ad2antrr 488 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 27 | 26 | eldifbd 3169 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ 𝑦) | 
| 28 |   | elrabi 2917 | 
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓} → 𝑧 ∈ 𝑦) | 
| 29 | 27, 28 | nsyl 629 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓}) | 
| 30 |   | unsnfi 6980 | 
. . . . . . 7
⊢ (({𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓}) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) ∈ Fin) | 
| 31 | 23, 24, 29, 30 | syl3anc 1249 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) ∈ Fin) | 
| 32 | 22, 31 | eqeltrrd 2274 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) ∈ Fin) | 
| 33 | 13, 32 | eqeltrid 2283 | 
. . . 4
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) | 
| 34 |   | ralsns 3660 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓)) | 
| 35 | 15, 34 | ax-mp 5 | 
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
{𝑧} ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓) | 
| 36 |   | sbsbc 2993 | 
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥] ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓) | 
| 37 |   | sbn 1971 | 
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑧 / 𝑥]𝜓) | 
| 38 | 35, 36, 37 | 3bitr2ri 209 | 
. . . . . . . . . 10
⊢ (¬
[𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓) | 
| 39 |   | rabeq0 3480 | 
. . . . . . . . . 10
⊢ ({𝑥 ∈ {𝑧} ∣ 𝜓} = ∅ ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓) | 
| 40 | 38, 39 | sylbb2 138 | 
. . . . . . . . 9
⊢ (¬
[𝑧 / 𝑥]𝜓 → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅) | 
| 41 | 40 | adantl 277 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅) | 
| 42 | 41 | uneq2d 3317 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ ∅)) | 
| 43 |   | un0 3484 | 
. . . . . . 7
⊢ ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ ∅) = {𝑥 ∈ 𝑦 ∣ 𝜓} | 
| 44 | 42, 43 | eqtrdi 2245 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = {𝑥 ∈ 𝑦 ∣ 𝜓}) | 
| 45 | 13, 44 | eqtrid 2241 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = {𝑥 ∈ 𝑦 ∣ 𝜓}) | 
| 46 |   | simplr 528 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) | 
| 47 | 45, 46 | eqeltrd 2273 | 
. . . 4
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) | 
| 48 |   | simplrr 536 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 49 | 48 | eldifad 3168 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → 𝑧 ∈ 𝐴) | 
| 50 |   | ssfirab.dc | 
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝜓) | 
| 51 | 50 | ad3antrrr 492 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → ∀𝑥 ∈ 𝐴 DECID 𝜓) | 
| 52 |   | nfs1v 1958 | 
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜓 | 
| 53 | 52 | nfdc 1673 | 
. . . . . . 7
⊢
Ⅎ𝑥DECID [𝑧 / 𝑥]𝜓 | 
| 54 |   | sbequ12 1785 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓)) | 
| 55 | 54 | dcbid 839 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (DECID 𝜓 ↔ DECID [𝑧 / 𝑥]𝜓)) | 
| 56 | 53, 55 | rspc 2862 | 
. . . . . 6
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 DECID 𝜓 → DECID [𝑧 / 𝑥]𝜓)) | 
| 57 | 49, 51, 56 | sylc 62 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → DECID
[𝑧 / 𝑥]𝜓) | 
| 58 |   | exmiddc 837 | 
. . . . 5
⊢
(DECID [𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓)) | 
| 59 | 57, 58 | syl 14 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓)) | 
| 60 | 33, 47, 59 | mpjaodan 799 | 
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) | 
| 61 | 60 | ex 115 | 
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)) | 
| 62 |   | ssfirab.a | 
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6953 | 
1
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) |