Step | Hyp | Ref
| Expression |
1 | | rabeq 2718 |
. . 3
⊢ (𝑤 = ∅ → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ ∅ ∣ 𝜓}) |
2 | 1 | eleq1d 2235 |
. 2
⊢ (𝑤 = ∅ → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin)) |
3 | | rabeq 2718 |
. . 3
⊢ (𝑤 = 𝑦 → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ 𝑦 ∣ 𝜓}) |
4 | 3 | eleq1d 2235 |
. 2
⊢ (𝑤 = 𝑦 → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin)) |
5 | | rabeq 2718 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓}) |
6 | 5 | eleq1d 2235 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)) |
7 | | rabeq 2718 |
. . 3
⊢ (𝑤 = 𝐴 → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
8 | 7 | eleq1d 2235 |
. 2
⊢ (𝑤 = 𝐴 → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin)) |
9 | | rab0 3437 |
. . . 4
⊢ {𝑥 ∈ ∅ ∣ 𝜓} = ∅ |
10 | | 0fin 6850 |
. . . 4
⊢ ∅
∈ Fin |
11 | 9, 10 | eqeltri 2239 |
. . 3
⊢ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin |
12 | 11 | a1i 9 |
. 2
⊢ (𝜑 → {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin) |
13 | | rabun2 3401 |
. . . . 5
⊢ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) |
14 | | sbsbc 2955 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]𝜓) |
15 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
16 | | ralsns 3614 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜓 ↔ [𝑧 / 𝑥]𝜓)) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑧}𝜓 ↔ [𝑧 / 𝑥]𝜓) |
18 | 14, 17 | bitr4i 186 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧}𝜓) |
19 | | rabid2 2642 |
. . . . . . . . 9
⊢ ({𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓} ↔ ∀𝑥 ∈ {𝑧}𝜓) |
20 | 18, 19 | sylbb2 137 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥]𝜓 → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓}) |
21 | 20 | adantl 275 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓}) |
22 | 21 | uneq2d 3276 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓})) |
23 | | simplr 520 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) |
24 | 15 | a1i 9 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ V) |
25 | | simprr 522 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
26 | 25 | ad2antrr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
27 | 26 | eldifbd 3128 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ 𝑦) |
28 | | elrabi 2879 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓} → 𝑧 ∈ 𝑦) |
29 | 27, 28 | nsyl 618 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓}) |
30 | | unsnfi 6884 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓}) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) ∈ Fin) |
31 | 23, 24, 29, 30 | syl3anc 1228 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) ∈ Fin) |
32 | 22, 31 | eqeltrrd 2244 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) ∈ Fin) |
33 | 13, 32 | eqeltrid 2253 |
. . . 4
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) |
34 | | ralsns 3614 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓)) |
35 | 15, 34 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
{𝑧} ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓) |
36 | | sbsbc 2955 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥] ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓) |
37 | | sbn 1940 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑧 / 𝑥]𝜓) |
38 | 35, 36, 37 | 3bitr2ri 208 |
. . . . . . . . . 10
⊢ (¬
[𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓) |
39 | | rabeq0 3438 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ {𝑧} ∣ 𝜓} = ∅ ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓) |
40 | 38, 39 | sylbb2 137 |
. . . . . . . . 9
⊢ (¬
[𝑧 / 𝑥]𝜓 → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅) |
41 | 40 | adantl 275 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅) |
42 | 41 | uneq2d 3276 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ ∅)) |
43 | | un0 3442 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ ∅) = {𝑥 ∈ 𝑦 ∣ 𝜓} |
44 | 42, 43 | eqtrdi 2215 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = {𝑥 ∈ 𝑦 ∣ 𝜓}) |
45 | 13, 44 | syl5eq 2211 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = {𝑥 ∈ 𝑦 ∣ 𝜓}) |
46 | | simplr 520 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) |
47 | 45, 46 | eqeltrd 2243 |
. . . 4
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) |
48 | | simplrr 526 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
49 | 48 | eldifad 3127 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → 𝑧 ∈ 𝐴) |
50 | | ssfirab.dc |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝜓) |
51 | 50 | ad3antrrr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → ∀𝑥 ∈ 𝐴 DECID 𝜓) |
52 | | nfs1v 1927 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜓 |
53 | 52 | nfdc 1647 |
. . . . . . 7
⊢
Ⅎ𝑥DECID [𝑧 / 𝑥]𝜓 |
54 | | sbequ12 1759 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓)) |
55 | 54 | dcbid 828 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (DECID 𝜓 ↔ DECID [𝑧 / 𝑥]𝜓)) |
56 | 53, 55 | rspc 2824 |
. . . . . 6
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 DECID 𝜓 → DECID [𝑧 / 𝑥]𝜓)) |
57 | 49, 51, 56 | sylc 62 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → DECID
[𝑧 / 𝑥]𝜓) |
58 | | exmiddc 826 |
. . . . 5
⊢
(DECID [𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓)) |
59 | 57, 58 | syl 14 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓)) |
60 | 33, 47, 59 | mpjaodan 788 |
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) |
61 | 60 | ex 114 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)) |
62 | | ssfirab.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6858 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) |