ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfirab GIF version

Theorem ssfirab 7106
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
Hypotheses
Ref Expression
ssfirab.a (𝜑𝐴 ∈ Fin)
ssfirab.dc (𝜑 → ∀𝑥𝐴 DECID 𝜓)
Assertion
Ref Expression
ssfirab (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ssfirab
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2791 . . 3 (𝑤 = ∅ → {𝑥𝑤𝜓} = {𝑥 ∈ ∅ ∣ 𝜓})
21eleq1d 2298 . 2 (𝑤 = ∅ → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin))
3 rabeq 2791 . . 3 (𝑤 = 𝑦 → {𝑥𝑤𝜓} = {𝑥𝑦𝜓})
43eleq1d 2298 . 2 (𝑤 = 𝑦 → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥𝑦𝜓} ∈ Fin))
5 rabeq 2791 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥𝑤𝜓} = {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓})
65eleq1d 2298 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin))
7 rabeq 2791 . . 3 (𝑤 = 𝐴 → {𝑥𝑤𝜓} = {𝑥𝐴𝜓})
87eleq1d 2298 . 2 (𝑤 = 𝐴 → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥𝐴𝜓} ∈ Fin))
9 rab0 3520 . . . 4 {𝑥 ∈ ∅ ∣ 𝜓} = ∅
10 0fin 7054 . . . 4 ∅ ∈ Fin
119, 10eqeltri 2302 . . 3 {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin
1211a1i 9 . 2 (𝜑 → {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin)
13 rabun2 3483 . . . . 5 {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓})
14 sbsbc 3032 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)
15 vex 2802 . . . . . . . . . . 11 𝑧 ∈ V
16 ralsns 3704 . . . . . . . . . . 11 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜓[𝑧 / 𝑥]𝜓))
1715, 16ax-mp 5 . . . . . . . . . 10 (∀𝑥 ∈ {𝑧}𝜓[𝑧 / 𝑥]𝜓)
1814, 17bitr4i 187 . . . . . . . . 9 ([𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧}𝜓)
19 rabid2 2708 . . . . . . . . 9 ({𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓} ↔ ∀𝑥 ∈ {𝑧}𝜓)
2018, 19sylbb2 138 . . . . . . . 8 ([𝑧 / 𝑥]𝜓 → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓})
2120adantl 277 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓})
2221uneq2d 3358 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑧}) = ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}))
23 simplr 528 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥𝑦𝜓} ∈ Fin)
2415a1i 9 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ V)
25 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2625ad2antrr 488 . . . . . . . . 9 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ (𝐴𝑦))
2726eldifbd 3209 . . . . . . . 8 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧𝑦)
28 elrabi 2956 . . . . . . . 8 (𝑧 ∈ {𝑥𝑦𝜓} → 𝑧𝑦)
2927, 28nsyl 631 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ {𝑥𝑦𝜓})
30 unsnfi 7089 . . . . . . 7 (({𝑥𝑦𝜓} ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ {𝑥𝑦𝜓}) → ({𝑥𝑦𝜓} ∪ {𝑧}) ∈ Fin)
3123, 24, 29, 30syl3anc 1271 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑧}) ∈ Fin)
3222, 31eqeltrrd 2307 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) ∈ Fin)
3313, 32eqeltrid 2316 . . . 4 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
34 ralsns 3704 . . . . . . . . . . . 12 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓))
3515, 34ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ {𝑧} ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓)
36 sbsbc 3032 . . . . . . . . . . 11 ([𝑧 / 𝑥] ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓)
37 sbn 2003 . . . . . . . . . . 11 ([𝑧 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑧 / 𝑥]𝜓)
3835, 36, 373bitr2ri 209 . . . . . . . . . 10 (¬ [𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓)
39 rabeq0 3521 . . . . . . . . . 10 ({𝑥 ∈ {𝑧} ∣ 𝜓} = ∅ ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓)
4038, 39sylbb2 138 . . . . . . . . 9 (¬ [𝑧 / 𝑥]𝜓 → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅)
4140adantl 277 . . . . . . . 8 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅)
4241uneq2d 3358 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = ({𝑥𝑦𝜓} ∪ ∅))
43 un0 3525 . . . . . . 7 ({𝑥𝑦𝜓} ∪ ∅) = {𝑥𝑦𝜓}
4442, 43eqtrdi 2278 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = {𝑥𝑦𝜓})
4513, 44eqtrid 2274 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = {𝑥𝑦𝜓})
46 simplr 528 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥𝑦𝜓} ∈ Fin)
4745, 46eqeltrd 2306 . . . 4 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
48 simplrr 536 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
4948eldifad 3208 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → 𝑧𝐴)
50 ssfirab.dc . . . . . . 7 (𝜑 → ∀𝑥𝐴 DECID 𝜓)
5150ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → ∀𝑥𝐴 DECID 𝜓)
52 nfs1v 1990 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜓
5352nfdc 1705 . . . . . . 7 𝑥DECID [𝑧 / 𝑥]𝜓
54 sbequ12 1817 . . . . . . . 8 (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓))
5554dcbid 843 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝜓DECID [𝑧 / 𝑥]𝜓))
5653, 55rspc 2901 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜓DECID [𝑧 / 𝑥]𝜓))
5749, 51, 56sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → DECID [𝑧 / 𝑥]𝜓)
58 exmiddc 841 . . . . 5 (DECID [𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓))
5957, 58syl 14 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓))
6033, 47, 59mpjaodan 803 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
6160ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑥𝑦𝜓} ∈ Fin → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin))
62 ssfirab.a . 2 (𝜑𝐴 ∈ Fin)
632, 4, 6, 8, 12, 61, 62findcard2sd 7062 1 (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  [wsb 1808  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  [wsbc 3028  cdif 3194  cun 3195  wss 3197  c0 3491  {csn 3666  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by:  ssfidc  7107  phivalfi  12742  hashdvds  12751  phiprmpw  12752  phimullem  12755  hashgcdeq  12770  lgsquadlemofi  15763  lgsquadlem1  15764  lgsquadlem2  15765
  Copyright terms: Public domain W3C validator