ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfirab GIF version

Theorem ssfirab 6997
Description: A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
Hypotheses
Ref Expression
ssfirab.a (𝜑𝐴 ∈ Fin)
ssfirab.dc (𝜑 → ∀𝑥𝐴 DECID 𝜓)
Assertion
Ref Expression
ssfirab (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ssfirab
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2755 . . 3 (𝑤 = ∅ → {𝑥𝑤𝜓} = {𝑥 ∈ ∅ ∣ 𝜓})
21eleq1d 2265 . 2 (𝑤 = ∅ → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin))
3 rabeq 2755 . . 3 (𝑤 = 𝑦 → {𝑥𝑤𝜓} = {𝑥𝑦𝜓})
43eleq1d 2265 . 2 (𝑤 = 𝑦 → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥𝑦𝜓} ∈ Fin))
5 rabeq 2755 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥𝑤𝜓} = {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓})
65eleq1d 2265 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin))
7 rabeq 2755 . . 3 (𝑤 = 𝐴 → {𝑥𝑤𝜓} = {𝑥𝐴𝜓})
87eleq1d 2265 . 2 (𝑤 = 𝐴 → ({𝑥𝑤𝜓} ∈ Fin ↔ {𝑥𝐴𝜓} ∈ Fin))
9 rab0 3479 . . . 4 {𝑥 ∈ ∅ ∣ 𝜓} = ∅
10 0fin 6945 . . . 4 ∅ ∈ Fin
119, 10eqeltri 2269 . . 3 {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin
1211a1i 9 . 2 (𝜑 → {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin)
13 rabun2 3442 . . . . 5 {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓})
14 sbsbc 2993 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)
15 vex 2766 . . . . . . . . . . 11 𝑧 ∈ V
16 ralsns 3660 . . . . . . . . . . 11 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜓[𝑧 / 𝑥]𝜓))
1715, 16ax-mp 5 . . . . . . . . . 10 (∀𝑥 ∈ {𝑧}𝜓[𝑧 / 𝑥]𝜓)
1814, 17bitr4i 187 . . . . . . . . 9 ([𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧}𝜓)
19 rabid2 2674 . . . . . . . . 9 ({𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓} ↔ ∀𝑥 ∈ {𝑧}𝜓)
2018, 19sylbb2 138 . . . . . . . 8 ([𝑧 / 𝑥]𝜓 → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓})
2120adantl 277 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓})
2221uneq2d 3317 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑧}) = ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}))
23 simplr 528 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥𝑦𝜓} ∈ Fin)
2415a1i 9 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ V)
25 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2625ad2antrr 488 . . . . . . . . 9 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ (𝐴𝑦))
2726eldifbd 3169 . . . . . . . 8 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧𝑦)
28 elrabi 2917 . . . . . . . 8 (𝑧 ∈ {𝑥𝑦𝜓} → 𝑧𝑦)
2927, 28nsyl 629 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ {𝑥𝑦𝜓})
30 unsnfi 6980 . . . . . . 7 (({𝑥𝑦𝜓} ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ {𝑥𝑦𝜓}) → ({𝑥𝑦𝜓} ∪ {𝑧}) ∈ Fin)
3123, 24, 29, 30syl3anc 1249 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑧}) ∈ Fin)
3222, 31eqeltrrd 2274 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) ∈ Fin)
3313, 32eqeltrid 2283 . . . 4 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
34 ralsns 3660 . . . . . . . . . . . 12 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓))
3515, 34ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ {𝑧} ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓)
36 sbsbc 2993 . . . . . . . . . . 11 ([𝑧 / 𝑥] ¬ 𝜓[𝑧 / 𝑥] ¬ 𝜓)
37 sbn 1971 . . . . . . . . . . 11 ([𝑧 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑧 / 𝑥]𝜓)
3835, 36, 373bitr2ri 209 . . . . . . . . . 10 (¬ [𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓)
39 rabeq0 3480 . . . . . . . . . 10 ({𝑥 ∈ {𝑧} ∣ 𝜓} = ∅ ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓)
4038, 39sylbb2 138 . . . . . . . . 9 (¬ [𝑧 / 𝑥]𝜓 → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅)
4140adantl 277 . . . . . . . 8 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅)
4241uneq2d 3317 . . . . . . 7 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = ({𝑥𝑦𝜓} ∪ ∅))
43 un0 3484 . . . . . . 7 ({𝑥𝑦𝜓} ∪ ∅) = {𝑥𝑦𝜓}
4442, 43eqtrdi 2245 . . . . . 6 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥𝑦𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = {𝑥𝑦𝜓})
4513, 44eqtrid 2241 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = {𝑥𝑦𝜓})
46 simplr 528 . . . . 5 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥𝑦𝜓} ∈ Fin)
4745, 46eqeltrd 2273 . . . 4 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
48 simplrr 536 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
4948eldifad 3168 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → 𝑧𝐴)
50 ssfirab.dc . . . . . . 7 (𝜑 → ∀𝑥𝐴 DECID 𝜓)
5150ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → ∀𝑥𝐴 DECID 𝜓)
52 nfs1v 1958 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜓
5352nfdc 1673 . . . . . . 7 𝑥DECID [𝑧 / 𝑥]𝜓
54 sbequ12 1785 . . . . . . . 8 (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓))
5554dcbid 839 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝜓DECID [𝑧 / 𝑥]𝜓))
5653, 55rspc 2862 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜓DECID [𝑧 / 𝑥]𝜓))
5749, 51, 56sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → DECID [𝑧 / 𝑥]𝜓)
58 exmiddc 837 . . . . 5 (DECID [𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓))
5957, 58syl 14 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓))
6033, 47, 59mpjaodan 799 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ {𝑥𝑦𝜓} ∈ Fin) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)
6160ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑥𝑦𝜓} ∈ Fin → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin))
62 ssfirab.a . 2 (𝜑𝐴 ∈ Fin)
632, 4, 6, 8, 12, 61, 62findcard2sd 6953 1 (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  [wsb 1776  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  [wsbc 2989  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  ssfidc  6998  phivalfi  12380  hashdvds  12389  phiprmpw  12390  phimullem  12393  hashgcdeq  12408  lgsquadlemofi  15317  lgsquadlem1  15318  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator