| Step | Hyp | Ref
| Expression |
| 1 | | rabeq 2755 |
. . 3
⊢ (𝑤 = ∅ → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ ∅ ∣ 𝜓}) |
| 2 | 1 | eleq1d 2265 |
. 2
⊢ (𝑤 = ∅ → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin)) |
| 3 | | rabeq 2755 |
. . 3
⊢ (𝑤 = 𝑦 → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ 𝑦 ∣ 𝜓}) |
| 4 | 3 | eleq1d 2265 |
. 2
⊢ (𝑤 = 𝑦 → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin)) |
| 5 | | rabeq 2755 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓}) |
| 6 | 5 | eleq1d 2265 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)) |
| 7 | | rabeq 2755 |
. . 3
⊢ (𝑤 = 𝐴 → {𝑥 ∈ 𝑤 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 8 | 7 | eleq1d 2265 |
. 2
⊢ (𝑤 = 𝐴 → ({𝑥 ∈ 𝑤 ∣ 𝜓} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin)) |
| 9 | | rab0 3480 |
. . . 4
⊢ {𝑥 ∈ ∅ ∣ 𝜓} = ∅ |
| 10 | | 0fin 6954 |
. . . 4
⊢ ∅
∈ Fin |
| 11 | 9, 10 | eqeltri 2269 |
. . 3
⊢ {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin |
| 12 | 11 | a1i 9 |
. 2
⊢ (𝜑 → {𝑥 ∈ ∅ ∣ 𝜓} ∈ Fin) |
| 13 | | rabun2 3443 |
. . . . 5
⊢ {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) |
| 14 | | sbsbc 2993 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]𝜓) |
| 15 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 16 | | ralsns 3661 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜓 ↔ [𝑧 / 𝑥]𝜓)) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑧}𝜓 ↔ [𝑧 / 𝑥]𝜓) |
| 18 | 14, 17 | bitr4i 187 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧}𝜓) |
| 19 | | rabid2 2674 |
. . . . . . . . 9
⊢ ({𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓} ↔ ∀𝑥 ∈ {𝑧}𝜓) |
| 20 | 18, 19 | sylbb2 138 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥]𝜓 → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓}) |
| 21 | 20 | adantl 277 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑧} = {𝑥 ∈ {𝑧} ∣ 𝜓}) |
| 22 | 21 | uneq2d 3318 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓})) |
| 23 | | simplr 528 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) |
| 24 | 15 | a1i 9 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ V) |
| 25 | | simprr 531 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 27 | 26 | eldifbd 3169 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ 𝑦) |
| 28 | | elrabi 2917 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓} → 𝑧 ∈ 𝑦) |
| 29 | 27, 28 | nsyl 629 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ¬ 𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓}) |
| 30 | | unsnfi 6989 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin ∧ 𝑧 ∈ V ∧ ¬ 𝑧 ∈ {𝑥 ∈ 𝑦 ∣ 𝜓}) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) ∈ Fin) |
| 31 | 23, 24, 29, 30 | syl3anc 1249 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑧}) ∈ Fin) |
| 32 | 22, 31 | eqeltrrd 2274 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) ∈ Fin) |
| 33 | 13, 32 | eqeltrid 2283 |
. . . 4
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) |
| 34 | | ralsns 3661 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓)) |
| 35 | 15, 34 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
{𝑧} ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓) |
| 36 | | sbsbc 2993 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥] ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ 𝜓) |
| 37 | | sbn 1971 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑧 / 𝑥]𝜓) |
| 38 | 35, 36, 37 | 3bitr2ri 209 |
. . . . . . . . . 10
⊢ (¬
[𝑧 / 𝑥]𝜓 ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓) |
| 39 | | rabeq0 3481 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ {𝑧} ∣ 𝜓} = ∅ ↔ ∀𝑥 ∈ {𝑧} ¬ 𝜓) |
| 40 | 38, 39 | sylbb2 138 |
. . . . . . . . 9
⊢ (¬
[𝑧 / 𝑥]𝜓 → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅) |
| 41 | 40 | adantl 277 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ {𝑧} ∣ 𝜓} = ∅) |
| 42 | 41 | uneq2d 3318 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ ∅)) |
| 43 | | un0 3485 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ ∅) = {𝑥 ∈ 𝑦 ∣ 𝜓} |
| 44 | 42, 43 | eqtrdi 2245 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∪ {𝑥 ∈ {𝑧} ∣ 𝜓}) = {𝑥 ∈ 𝑦 ∣ 𝜓}) |
| 45 | 13, 44 | eqtrid 2241 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} = {𝑥 ∈ 𝑦 ∣ 𝜓}) |
| 46 | | simplr 528 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) |
| 47 | 45, 46 | eqeltrd 2273 |
. . . 4
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) ∧ ¬ [𝑧 / 𝑥]𝜓) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) |
| 48 | | simplrr 536 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 49 | 48 | eldifad 3168 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → 𝑧 ∈ 𝐴) |
| 50 | | ssfirab.dc |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝜓) |
| 51 | 50 | ad3antrrr 492 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → ∀𝑥 ∈ 𝐴 DECID 𝜓) |
| 52 | | nfs1v 1958 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜓 |
| 53 | 52 | nfdc 1673 |
. . . . . . 7
⊢
Ⅎ𝑥DECID [𝑧 / 𝑥]𝜓 |
| 54 | | sbequ12 1785 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓)) |
| 55 | 54 | dcbid 839 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (DECID 𝜓 ↔ DECID [𝑧 / 𝑥]𝜓)) |
| 56 | 53, 55 | rspc 2862 |
. . . . . 6
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 DECID 𝜓 → DECID [𝑧 / 𝑥]𝜓)) |
| 57 | 49, 51, 56 | sylc 62 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → DECID
[𝑧 / 𝑥]𝜓) |
| 58 | | exmiddc 837 |
. . . . 5
⊢
(DECID [𝑧 / 𝑥]𝜓 → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓)) |
| 59 | 57, 58 | syl 14 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → ([𝑧 / 𝑥]𝜓 ∨ ¬ [𝑧 / 𝑥]𝜓)) |
| 60 | 33, 47, 59 | mpjaodan 799 |
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ {𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin) → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin) |
| 61 | 60 | ex 115 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ({𝑥 ∈ 𝑦 ∣ 𝜓} ∈ Fin → {𝑥 ∈ (𝑦 ∪ {𝑧}) ∣ 𝜓} ∈ Fin)) |
| 62 | | ssfirab.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 63 | 2, 4, 6, 8, 12, 61, 62 | findcard2sd 6962 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) |