Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iswomninnlem GIF version

Theorem iswomninnlem 15539
Description: Lemma for iswomnimap 7225. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
Hypothesis
Ref Expression
iswomninnlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
iswomninnlem (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝐺,𝑥   𝑓,𝑉,𝑥

Proof of Theorem iswomninnlem
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 iswomnimap 7225 . 2 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o))
2 fveq1 5553 . . . . . . . . 9 (𝑔 = (𝐺𝑓) → (𝑔𝑥) = ((𝐺𝑓)‘𝑥))
32eqeq1d 2202 . . . . . . . 8 (𝑔 = (𝐺𝑓) → ((𝑔𝑥) = 1o ↔ ((𝐺𝑓)‘𝑥) = 1o))
43ralbidv 2494 . . . . . . 7 (𝑔 = (𝐺𝑓) → (∀𝑥𝐴 (𝑔𝑥) = 1o ↔ ∀𝑥𝐴 ((𝐺𝑓)‘𝑥) = 1o))
54dcbid 839 . . . . . 6 (𝑔 = (𝐺𝑓) → (DECID𝑥𝐴 (𝑔𝑥) = 1oDECID𝑥𝐴 ((𝐺𝑓)‘𝑥) = 1o))
6 simplr 528 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o)
7 iswomninnlem.g . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
87012of 15486 . . . . . . . . . 10 (𝐺 ↾ {0, 1}):{0, 1}⟶2o
9 elmapi 6724 . . . . . . . . . 10 (𝑓 ∈ ({0, 1} ↑𝑚 𝐴) → 𝑓:𝐴⟶{0, 1})
10 fco2 5420 . . . . . . . . . 10 (((𝐺 ↾ {0, 1}):{0, 1}⟶2o𝑓:𝐴⟶{0, 1}) → (𝐺𝑓):𝐴⟶2o)
118, 9, 10sylancr 414 . . . . . . . . 9 (𝑓 ∈ ({0, 1} ↑𝑚 𝐴) → (𝐺𝑓):𝐴⟶2o)
1211adantl 277 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝐺𝑓):𝐴⟶2o)
13 2onn 6574 . . . . . . . . . 10 2o ∈ ω
1413a1i 9 . . . . . . . . 9 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → 2o ∈ ω)
15 simpl 109 . . . . . . . . 9 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝐴𝑉)
1614, 15elmapd 6716 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ((𝐺𝑓) ∈ (2o𝑚 𝐴) ↔ (𝐺𝑓):𝐴⟶2o))
1712, 16mpbird 167 . . . . . . 7 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝐺𝑓) ∈ (2o𝑚 𝐴))
1817adantlr 477 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝐺𝑓) ∈ (2o𝑚 𝐴))
195, 6, 18rspcdva 2869 . . . . 5 (((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → DECID𝑥𝐴 ((𝐺𝑓)‘𝑥) = 1o)
20 nfv 1539 . . . . . . . . 9 𝑥 𝐴𝑉
21 nfcv 2336 . . . . . . . . . 10 𝑥(2o𝑚 𝐴)
22 nfra1 2525 . . . . . . . . . . 11 𝑥𝑥𝐴 (𝑔𝑥) = 1o
2322nfdc 1670 . . . . . . . . . 10 𝑥DECID𝑥𝐴 (𝑔𝑥) = 1o
2421, 23nfralxy 2532 . . . . . . . . 9 𝑥𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o
2520, 24nfan 1576 . . . . . . . 8 𝑥(𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o)
26 nfv 1539 . . . . . . . 8 𝑥 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)
2725, 26nfan 1576 . . . . . . 7 𝑥((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴))
289ad2antlr 489 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑓:𝐴⟶{0, 1})
29 fvco3 5628 . . . . . . . . . 10 ((𝑓:𝐴⟶{0, 1} ∧ 𝑥𝐴) → ((𝐺𝑓)‘𝑥) = (𝐺‘(𝑓𝑥)))
3028, 29sylancom 420 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺𝑓)‘𝑥) = (𝐺‘(𝑓𝑥)))
3130eqeq1d 2202 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝐺𝑓)‘𝑥) = 1o ↔ (𝐺‘(𝑓𝑥)) = 1o))
32 df-1o 6469 . . . . . . . . . . . 12 1o = suc ∅
3332fveq2i 5557 . . . . . . . . . . 11 (𝐺‘1o) = (𝐺‘suc ∅)
34 0zd 9329 . . . . . . . . . . . . 13 (⊤ → 0 ∈ ℤ)
35 peano1 4626 . . . . . . . . . . . . . 14 ∅ ∈ ω
3635a1i 9 . . . . . . . . . . . . 13 (⊤ → ∅ ∈ ω)
3734, 7, 36frec2uzsucd 10472 . . . . . . . . . . . 12 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
3837mptru 1373 . . . . . . . . . . 11 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
3934, 7frec2uz0d 10470 . . . . . . . . . . . . . 14 (⊤ → (𝐺‘∅) = 0)
4039mptru 1373 . . . . . . . . . . . . 13 (𝐺‘∅) = 0
4140oveq1i 5928 . . . . . . . . . . . 12 ((𝐺‘∅) + 1) = (0 + 1)
42 0p1e1 9096 . . . . . . . . . . . 12 (0 + 1) = 1
4341, 42eqtri 2214 . . . . . . . . . . 11 ((𝐺‘∅) + 1) = 1
4433, 38, 433eqtri 2218 . . . . . . . . . 10 (𝐺‘1o) = 1
4544eqeq2i 2204 . . . . . . . . 9 ((𝐺‘(𝐺‘(𝑓𝑥))) = (𝐺‘1o) ↔ (𝐺‘(𝐺‘(𝑓𝑥))) = 1)
467frechashgf1o 10499 . . . . . . . . . . . . 13 𝐺:ω–1-1-onto→ℕ0
47 f1ocnv 5513 . . . . . . . . . . . . 13 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
48 f1of 5500 . . . . . . . . . . . . 13 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
4946, 47, 48mp2b 8 . . . . . . . . . . . 12 𝐺:ℕ0⟶ω
5049a1i 9 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝐺:ℕ0⟶ω)
51 0nn0 9255 . . . . . . . . . . . . 13 0 ∈ ℕ0
52 1nn0 9256 . . . . . . . . . . . . 13 1 ∈ ℕ0
53 prssi 3776 . . . . . . . . . . . . 13 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
5451, 52, 53mp2an 426 . . . . . . . . . . . 12 {0, 1} ⊆ ℕ0
55 simpr 110 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
5628, 55ffvelcdmd 5694 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ {0, 1})
5754, 56sselid 3177 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℕ0)
5850, 57ffvelcdmd 5694 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝐺‘(𝑓𝑥)) ∈ ω)
59 1onn 6573 . . . . . . . . . . 11 1o ∈ ω
60 f1of1 5499 . . . . . . . . . . . . 13 (𝐺:ω–1-1-onto→ℕ0𝐺:ω–1-1→ℕ0)
6146, 60ax-mp 5 . . . . . . . . . . . 12 𝐺:ω–1-1→ℕ0
62 f1fveq 5815 . . . . . . . . . . . 12 ((𝐺:ω–1-1→ℕ0 ∧ ((𝐺‘(𝑓𝑥)) ∈ ω ∧ 1o ∈ ω)) → ((𝐺‘(𝐺‘(𝑓𝑥))) = (𝐺‘1o) ↔ (𝐺‘(𝑓𝑥)) = 1o))
6361, 62mpan 424 . . . . . . . . . . 11 (((𝐺‘(𝑓𝑥)) ∈ ω ∧ 1o ∈ ω) → ((𝐺‘(𝐺‘(𝑓𝑥))) = (𝐺‘1o) ↔ (𝐺‘(𝑓𝑥)) = 1o))
6459, 63mpan2 425 . . . . . . . . . 10 ((𝐺‘(𝑓𝑥)) ∈ ω → ((𝐺‘(𝐺‘(𝑓𝑥))) = (𝐺‘1o) ↔ (𝐺‘(𝑓𝑥)) = 1o))
6558, 64syl 14 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺‘(𝐺‘(𝑓𝑥))) = (𝐺‘1o) ↔ (𝐺‘(𝑓𝑥)) = 1o))
6645, 65bitr3id 194 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺‘(𝐺‘(𝑓𝑥))) = 1 ↔ (𝐺‘(𝑓𝑥)) = 1o))
67 f1ocnvfv2 5821 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→ℕ0 ∧ (𝑓𝑥) ∈ ℕ0) → (𝐺‘(𝐺‘(𝑓𝑥))) = (𝑓𝑥))
6846, 57, 67sylancr 414 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝐺‘(𝐺‘(𝑓𝑥))) = (𝑓𝑥))
6968eqeq1d 2202 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺‘(𝐺‘(𝑓𝑥))) = 1 ↔ (𝑓𝑥) = 1))
7031, 66, 693bitr2d 216 . . . . . . 7 ((((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝐺𝑓)‘𝑥) = 1o ↔ (𝑓𝑥) = 1))
7127, 70ralbida 2488 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑥𝐴 ((𝐺𝑓)‘𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1))
7271dcbid 839 . . . . 5 (((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (DECID𝑥𝐴 ((𝐺𝑓)‘𝑥) = 1oDECID𝑥𝐴 (𝑓𝑥) = 1))
7319, 72mpbid 147 . . . 4 (((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → DECID𝑥𝐴 (𝑓𝑥) = 1)
7473ralrimiva 2567 . . 3 ((𝐴𝑉 ∧ ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o) → ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1)
75 fveq1 5553 . . . . . . . . 9 (𝑓 = (𝐺𝑔) → (𝑓𝑥) = ((𝐺𝑔)‘𝑥))
7675eqeq1d 2202 . . . . . . . 8 (𝑓 = (𝐺𝑔) → ((𝑓𝑥) = 1 ↔ ((𝐺𝑔)‘𝑥) = 1))
7776ralbidv 2494 . . . . . . 7 (𝑓 = (𝐺𝑔) → (∀𝑥𝐴 (𝑓𝑥) = 1 ↔ ∀𝑥𝐴 ((𝐺𝑔)‘𝑥) = 1))
7877dcbid 839 . . . . . 6 (𝑓 = (𝐺𝑔) → (DECID𝑥𝐴 (𝑓𝑥) = 1 ↔ DECID𝑥𝐴 ((𝐺𝑔)‘𝑥) = 1))
79 simplr 528 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1)
8072o01f 15487 . . . . . . . 8 (𝐺 ↾ 2o):2o⟶{0, 1}
81 elmapi 6724 . . . . . . . . 9 (𝑔 ∈ (2o𝑚 𝐴) → 𝑔:𝐴⟶2o)
8281adantl 277 . . . . . . . 8 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → 𝑔:𝐴⟶2o)
83 fco2 5420 . . . . . . . 8 (((𝐺 ↾ 2o):2o⟶{0, 1} ∧ 𝑔:𝐴⟶2o) → (𝐺𝑔):𝐴⟶{0, 1})
8480, 82, 83sylancr 414 . . . . . . 7 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (𝐺𝑔):𝐴⟶{0, 1})
85 prexg 4240 . . . . . . . . . 10 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ∈ V)
8651, 52, 85mp2an 426 . . . . . . . . 9 {0, 1} ∈ V
8786a1i 9 . . . . . . . 8 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → {0, 1} ∈ V)
88 simpll 527 . . . . . . . 8 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → 𝐴𝑉)
8987, 88elmapd 6716 . . . . . . 7 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → ((𝐺𝑔) ∈ ({0, 1} ↑𝑚 𝐴) ↔ (𝐺𝑔):𝐴⟶{0, 1}))
9084, 89mpbird 167 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (𝐺𝑔) ∈ ({0, 1} ↑𝑚 𝐴))
9178, 79, 90rspcdva 2869 . . . . 5 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → DECID𝑥𝐴 ((𝐺𝑔)‘𝑥) = 1)
92 nfcv 2336 . . . . . . . . . 10 𝑥({0, 1} ↑𝑚 𝐴)
93 nfra1 2525 . . . . . . . . . . 11 𝑥𝑥𝐴 (𝑓𝑥) = 1
9493nfdc 1670 . . . . . . . . . 10 𝑥DECID𝑥𝐴 (𝑓𝑥) = 1
9592, 94nfralxy 2532 . . . . . . . . 9 𝑥𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1
9620, 95nfan 1576 . . . . . . . 8 𝑥(𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1)
97 nfv 1539 . . . . . . . 8 𝑥 𝑔 ∈ (2o𝑚 𝐴)
9896, 97nfan 1576 . . . . . . 7 𝑥((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴))
9981ad2antlr 489 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑔:𝐴⟶2o)
100 fvco3 5628 . . . . . . . . . 10 ((𝑔:𝐴⟶2o𝑥𝐴) → ((𝐺𝑔)‘𝑥) = (𝐺‘(𝑔𝑥)))
10199, 100sylancom 420 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺𝑔)‘𝑥) = (𝐺‘(𝑔𝑥)))
102101eqeq1d 2202 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝐺𝑔)‘𝑥) = 1 ↔ (𝐺‘(𝑔𝑥)) = 1))
103 f1of 5500 . . . . . . . . . . 11 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
10446, 103mp1i 10 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝐺:ω⟶ℕ0)
105 omelon 4641 . . . . . . . . . . . . . 14 ω ∈ On
106105onelssi 4460 . . . . . . . . . . . . 13 (2o ∈ ω → 2o ⊆ ω)
10713, 106mp1i 10 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 2o ⊆ ω)
10899, 107fssd 5416 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑔:𝐴⟶ω)
109 simpr 110 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
110108, 109ffvelcdmd 5694 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ω)
111104, 110ffvelcdmd 5694 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝐺‘(𝑔𝑥)) ∈ ℕ0)
112 f1ocnvfv 5822 . . . . . . . . . . . . 13 ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈ ω) → ((𝐺‘1o) = 1 → (𝐺‘1) = 1o))
11346, 59, 112mp2an 426 . . . . . . . . . . . 12 ((𝐺‘1o) = 1 → (𝐺‘1) = 1o)
11444, 113ax-mp 5 . . . . . . . . . . 11 (𝐺‘1) = 1o
115114eqeq2i 2204 . . . . . . . . . 10 ((𝐺‘(𝐺‘(𝑔𝑥))) = (𝐺‘1) ↔ (𝐺‘(𝐺‘(𝑔𝑥))) = 1o)
116 f1of1 5499 . . . . . . . . . . . . 13 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ01-1→ω)
11746, 47, 116mp2b 8 . . . . . . . . . . . 12 𝐺:ℕ01-1→ω
118 f1fveq 5815 . . . . . . . . . . . 12 ((𝐺:ℕ01-1→ω ∧ ((𝐺‘(𝑔𝑥)) ∈ ℕ0 ∧ 1 ∈ ℕ0)) → ((𝐺‘(𝐺‘(𝑔𝑥))) = (𝐺‘1) ↔ (𝐺‘(𝑔𝑥)) = 1))
119117, 118mpan 424 . . . . . . . . . . 11 (((𝐺‘(𝑔𝑥)) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐺‘(𝐺‘(𝑔𝑥))) = (𝐺‘1) ↔ (𝐺‘(𝑔𝑥)) = 1))
12052, 119mpan2 425 . . . . . . . . . 10 ((𝐺‘(𝑔𝑥)) ∈ ℕ0 → ((𝐺‘(𝐺‘(𝑔𝑥))) = (𝐺‘1) ↔ (𝐺‘(𝑔𝑥)) = 1))
121115, 120bitr3id 194 . . . . . . . . 9 ((𝐺‘(𝑔𝑥)) ∈ ℕ0 → ((𝐺‘(𝐺‘(𝑔𝑥))) = 1o ↔ (𝐺‘(𝑔𝑥)) = 1))
122111, 121syl 14 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺‘(𝐺‘(𝑔𝑥))) = 1o ↔ (𝐺‘(𝑔𝑥)) = 1))
123 f1ocnvfv1 5820 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→ℕ0 ∧ (𝑔𝑥) ∈ ω) → (𝐺‘(𝐺‘(𝑔𝑥))) = (𝑔𝑥))
12446, 110, 123sylancr 414 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝐺‘(𝐺‘(𝑔𝑥))) = (𝑔𝑥))
125124eqeq1d 2202 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝐺‘(𝐺‘(𝑔𝑥))) = 1o ↔ (𝑔𝑥) = 1o))
126102, 122, 1253bitr2d 216 . . . . . . 7 ((((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝐺𝑔)‘𝑥) = 1 ↔ (𝑔𝑥) = 1o))
12798, 126ralbida 2488 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (∀𝑥𝐴 ((𝐺𝑔)‘𝑥) = 1 ↔ ∀𝑥𝐴 (𝑔𝑥) = 1o))
128127dcbid 839 . . . . 5 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (DECID𝑥𝐴 ((𝐺𝑔)‘𝑥) = 1 ↔ DECID𝑥𝐴 (𝑔𝑥) = 1o))
12991, 128mpbid 147 . . . 4 (((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → DECID𝑥𝐴 (𝑔𝑥) = 1o)
130129ralrimiva 2567 . . 3 ((𝐴𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1) → ∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o)
13174, 130impbida 596 . 2 (𝐴𝑉 → (∀𝑔 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1o ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1))
1321, 131bitrd 188 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wtru 1365  wcel 2164  wral 2472  Vcvv 2760  wss 3153  c0 3446  {cpr 3619  cmpt 4090  suc csuc 4396  ωcom 4622  ccnv 4658  cres 4661  ccom 4663  wf 5250  1-1wf1 5251  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  freccfrec 6443  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  WOmnicwomni 7222  0cc0 7872  1c1 7873   + caddc 7875  0cn0 9240  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-map 6704  df-womni 7223  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  iswomninn  15540
  Copyright terms: Public domain W3C validator