Step | Hyp | Ref
| Expression |
1 | | iswomnimap 7166 |
. 2
β’ (π΄ β π β (π΄ β WOmni β βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o)) |
2 | | fveq1 5516 |
. . . . . . . . 9
β’ (π = (β‘πΊ β π) β (πβπ₯) = ((β‘πΊ β π)βπ₯)) |
3 | 2 | eqeq1d 2186 |
. . . . . . . 8
β’ (π = (β‘πΊ β π) β ((πβπ₯) = 1o β ((β‘πΊ β π)βπ₯) = 1o)) |
4 | 3 | ralbidv 2477 |
. . . . . . 7
β’ (π = (β‘πΊ β π) β (βπ₯ β π΄ (πβπ₯) = 1o β βπ₯ β π΄ ((β‘πΊ β π)βπ₯) = 1o)) |
5 | 4 | dcbid 838 |
. . . . . 6
β’ (π = (β‘πΊ β π) β (DECID βπ₯ β π΄ (πβπ₯) = 1o β DECID
βπ₯ β π΄ ((β‘πΊ β π)βπ₯) = 1o)) |
6 | | simplr 528 |
. . . . . 6
β’ (((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) |
7 | | iswomninnlem.g |
. . . . . . . . . . 11
β’ πΊ = frec((π₯ β β€ β¦ (π₯ + 1)), 0) |
8 | 7 | 012of 14830 |
. . . . . . . . . 10
β’ (β‘πΊ βΎ {0, 1}):{0,
1}βΆ2o |
9 | | elmapi 6672 |
. . . . . . . . . 10
β’ (π β ({0, 1}
βπ π΄) β π:π΄βΆ{0, 1}) |
10 | | fco2 5384 |
. . . . . . . . . 10
β’ (((β‘πΊ βΎ {0, 1}):{0, 1}βΆ2o
β§ π:π΄βΆ{0, 1}) β (β‘πΊ β π):π΄βΆ2o) |
11 | 8, 9, 10 | sylancr 414 |
. . . . . . . . 9
β’ (π β ({0, 1}
βπ π΄) β (β‘πΊ β π):π΄βΆ2o) |
12 | 11 | adantl 277 |
. . . . . . . 8
β’ ((π΄ β π β§ π β ({0, 1} βπ
π΄)) β (β‘πΊ β π):π΄βΆ2o) |
13 | | 2onn 6524 |
. . . . . . . . . 10
β’
2o β Ο |
14 | 13 | a1i 9 |
. . . . . . . . 9
β’ ((π΄ β π β§ π β ({0, 1} βπ
π΄)) β 2o
β Ο) |
15 | | simpl 109 |
. . . . . . . . 9
β’ ((π΄ β π β§ π β ({0, 1} βπ
π΄)) β π΄ β π) |
16 | 14, 15 | elmapd 6664 |
. . . . . . . 8
β’ ((π΄ β π β§ π β ({0, 1} βπ
π΄)) β ((β‘πΊ β π) β (2o
βπ π΄) β (β‘πΊ β π):π΄βΆ2o)) |
17 | 12, 16 | mpbird 167 |
. . . . . . 7
β’ ((π΄ β π β§ π β ({0, 1} βπ
π΄)) β (β‘πΊ β π) β (2o
βπ π΄)) |
18 | 17 | adantlr 477 |
. . . . . 6
β’ (((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β (β‘πΊ β π) β (2o
βπ π΄)) |
19 | 5, 6, 18 | rspcdva 2848 |
. . . . 5
β’ (((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β
DECID βπ₯ β π΄ ((β‘πΊ β π)βπ₯) = 1o) |
20 | | nfv 1528 |
. . . . . . . . 9
β’
β²π₯ π΄ β π |
21 | | nfcv 2319 |
. . . . . . . . . 10
β’
β²π₯(2o βπ
π΄) |
22 | | nfra1 2508 |
. . . . . . . . . . 11
β’
β²π₯βπ₯ β π΄ (πβπ₯) = 1o |
23 | 22 | nfdc 1659 |
. . . . . . . . . 10
β’
β²π₯DECID βπ₯ β π΄ (πβπ₯) = 1o |
24 | 21, 23 | nfralxy 2515 |
. . . . . . . . 9
β’
β²π₯βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o |
25 | 20, 24 | nfan 1565 |
. . . . . . . 8
β’
β²π₯(π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) |
26 | | nfv 1528 |
. . . . . . . 8
β’
β²π₯ π β ({0, 1}
βπ π΄) |
27 | 25, 26 | nfan 1565 |
. . . . . . 7
β’
β²π₯((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) |
28 | 9 | ad2antlr 489 |
. . . . . . . . . 10
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β π:π΄βΆ{0, 1}) |
29 | | fvco3 5589 |
. . . . . . . . . 10
β’ ((π:π΄βΆ{0, 1} β§ π₯ β π΄) β ((β‘πΊ β π)βπ₯) = (β‘πΊβ(πβπ₯))) |
30 | 28, 29 | sylancom 420 |
. . . . . . . . 9
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β ((β‘πΊ β π)βπ₯) = (β‘πΊβ(πβπ₯))) |
31 | 30 | eqeq1d 2186 |
. . . . . . . 8
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β (((β‘πΊ β π)βπ₯) = 1o β (β‘πΊβ(πβπ₯)) = 1o)) |
32 | | df-1o 6419 |
. . . . . . . . . . . 12
β’
1o = suc β
|
33 | 32 | fveq2i 5520 |
. . . . . . . . . . 11
β’ (πΊβ1o) = (πΊβsuc
β
) |
34 | | 0zd 9267 |
. . . . . . . . . . . . 13
β’ (β€
β 0 β β€) |
35 | | peano1 4595 |
. . . . . . . . . . . . . 14
β’ β
β Ο |
36 | 35 | a1i 9 |
. . . . . . . . . . . . 13
β’ (β€
β β
β Ο) |
37 | 34, 7, 36 | frec2uzsucd 10403 |
. . . . . . . . . . . 12
β’ (β€
β (πΊβsuc
β
) = ((πΊββ
) + 1)) |
38 | 37 | mptru 1362 |
. . . . . . . . . . 11
β’ (πΊβsuc β
) = ((πΊββ
) +
1) |
39 | 34, 7 | frec2uz0d 10401 |
. . . . . . . . . . . . . 14
β’ (β€
β (πΊββ
) =
0) |
40 | 39 | mptru 1362 |
. . . . . . . . . . . . 13
β’ (πΊββ
) =
0 |
41 | 40 | oveq1i 5887 |
. . . . . . . . . . . 12
β’ ((πΊββ
) + 1) = (0 +
1) |
42 | | 0p1e1 9035 |
. . . . . . . . . . . 12
β’ (0 + 1) =
1 |
43 | 41, 42 | eqtri 2198 |
. . . . . . . . . . 11
β’ ((πΊββ
) + 1) =
1 |
44 | 33, 38, 43 | 3eqtri 2202 |
. . . . . . . . . 10
β’ (πΊβ1o) =
1 |
45 | 44 | eqeq2i 2188 |
. . . . . . . . 9
β’ ((πΊβ(β‘πΊβ(πβπ₯))) = (πΊβ1o) β (πΊβ(β‘πΊβ(πβπ₯))) = 1) |
46 | 7 | frechashgf1o 10430 |
. . . . . . . . . . . . 13
β’ πΊ:Οβ1-1-ontoββ0 |
47 | | f1ocnv 5476 |
. . . . . . . . . . . . 13
β’ (πΊ:Οβ1-1-ontoββ0 β β‘πΊ:β0β1-1-ontoβΟ) |
48 | | f1of 5463 |
. . . . . . . . . . . . 13
β’ (β‘πΊ:β0β1-1-ontoβΟ β β‘πΊ:β0βΆΟ) |
49 | 46, 47, 48 | mp2b 8 |
. . . . . . . . . . . 12
β’ β‘πΊ:β0βΆΟ |
50 | 49 | a1i 9 |
. . . . . . . . . . 11
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β β‘πΊ:β0βΆΟ) |
51 | | 0nn0 9193 |
. . . . . . . . . . . . 13
β’ 0 β
β0 |
52 | | 1nn0 9194 |
. . . . . . . . . . . . 13
β’ 1 β
β0 |
53 | | prssi 3752 |
. . . . . . . . . . . . 13
β’ ((0
β β0 β§ 1 β β0) β {0, 1}
β β0) |
54 | 51, 52, 53 | mp2an 426 |
. . . . . . . . . . . 12
β’ {0, 1}
β β0 |
55 | | simpr 110 |
. . . . . . . . . . . . 13
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β π₯ β π΄) |
56 | 28, 55 | ffvelcdmd 5654 |
. . . . . . . . . . . 12
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β (πβπ₯) β {0, 1}) |
57 | 54, 56 | sselid 3155 |
. . . . . . . . . . 11
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β (πβπ₯) β
β0) |
58 | 50, 57 | ffvelcdmd 5654 |
. . . . . . . . . 10
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β (β‘πΊβ(πβπ₯)) β Ο) |
59 | | 1onn 6523 |
. . . . . . . . . . 11
β’
1o β Ο |
60 | | f1of1 5462 |
. . . . . . . . . . . . 13
β’ (πΊ:Οβ1-1-ontoββ0 β πΊ:Οβ1-1ββ0) |
61 | 46, 60 | ax-mp 5 |
. . . . . . . . . . . 12
β’ πΊ:Οβ1-1ββ0 |
62 | | f1fveq 5775 |
. . . . . . . . . . . 12
β’ ((πΊ:Οβ1-1ββ0 β§ ((β‘πΊβ(πβπ₯)) β Ο β§ 1o β
Ο)) β ((πΊβ(β‘πΊβ(πβπ₯))) = (πΊβ1o) β (β‘πΊβ(πβπ₯)) = 1o)) |
63 | 61, 62 | mpan 424 |
. . . . . . . . . . 11
β’ (((β‘πΊβ(πβπ₯)) β Ο β§ 1o β
Ο) β ((πΊβ(β‘πΊβ(πβπ₯))) = (πΊβ1o) β (β‘πΊβ(πβπ₯)) = 1o)) |
64 | 59, 63 | mpan2 425 |
. . . . . . . . . 10
β’ ((β‘πΊβ(πβπ₯)) β Ο β ((πΊβ(β‘πΊβ(πβπ₯))) = (πΊβ1o) β (β‘πΊβ(πβπ₯)) = 1o)) |
65 | 58, 64 | syl 14 |
. . . . . . . . 9
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β ((πΊβ(β‘πΊβ(πβπ₯))) = (πΊβ1o) β (β‘πΊβ(πβπ₯)) = 1o)) |
66 | 45, 65 | bitr3id 194 |
. . . . . . . 8
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β ((πΊβ(β‘πΊβ(πβπ₯))) = 1 β (β‘πΊβ(πβπ₯)) = 1o)) |
67 | | f1ocnvfv2 5781 |
. . . . . . . . . 10
β’ ((πΊ:Οβ1-1-ontoββ0 β§ (πβπ₯) β β0) β (πΊβ(β‘πΊβ(πβπ₯))) = (πβπ₯)) |
68 | 46, 57, 67 | sylancr 414 |
. . . . . . . . 9
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β (πΊβ(β‘πΊβ(πβπ₯))) = (πβπ₯)) |
69 | 68 | eqeq1d 2186 |
. . . . . . . 8
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β ((πΊβ(β‘πΊβ(πβπ₯))) = 1 β (πβπ₯) = 1)) |
70 | 31, 66, 69 | 3bitr2d 216 |
. . . . . . 7
β’ ((((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β§ π₯ β π΄) β (((β‘πΊ β π)βπ₯) = 1o β (πβπ₯) = 1)) |
71 | 27, 70 | ralbida 2471 |
. . . . . 6
β’ (((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β (βπ₯ β π΄ ((β‘πΊ β π)βπ₯) = 1o β βπ₯ β π΄ (πβπ₯) = 1)) |
72 | 71 | dcbid 838 |
. . . . 5
β’ (((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β
(DECID βπ₯ β π΄ ((β‘πΊ β π)βπ₯) = 1o β DECID
βπ₯ β π΄ (πβπ₯) = 1)) |
73 | 19, 72 | mpbid 147 |
. . . 4
β’ (((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β§ π β ({0, 1} βπ
π΄)) β
DECID βπ₯ β π΄ (πβπ₯) = 1) |
74 | 73 | ralrimiva 2550 |
. . 3
β’ ((π΄ β π β§ βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) β βπ β ({0, 1}
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1) |
75 | | fveq1 5516 |
. . . . . . . . 9
β’ (π = (πΊ β π) β (πβπ₯) = ((πΊ β π)βπ₯)) |
76 | 75 | eqeq1d 2186 |
. . . . . . . 8
β’ (π = (πΊ β π) β ((πβπ₯) = 1 β ((πΊ β π)βπ₯) = 1)) |
77 | 76 | ralbidv 2477 |
. . . . . . 7
β’ (π = (πΊ β π) β (βπ₯ β π΄ (πβπ₯) = 1 β βπ₯ β π΄ ((πΊ β π)βπ₯) = 1)) |
78 | 77 | dcbid 838 |
. . . . . 6
β’ (π = (πΊ β π) β (DECID βπ₯ β π΄ (πβπ₯) = 1 β DECID
βπ₯ β π΄ ((πΊ β π)βπ₯) = 1)) |
79 | | simplr 528 |
. . . . . 6
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) |
80 | 7 | 2o01f 14831 |
. . . . . . . 8
β’ (πΊ βΎ
2o):2oβΆ{0, 1} |
81 | | elmapi 6672 |
. . . . . . . . 9
β’ (π β (2o
βπ π΄) β π:π΄βΆ2o) |
82 | 81 | adantl 277 |
. . . . . . . 8
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β π:π΄βΆ2o) |
83 | | fco2 5384 |
. . . . . . . 8
β’ (((πΊ βΎ
2o):2oβΆ{0, 1} β§ π:π΄βΆ2o) β (πΊ β π):π΄βΆ{0, 1}) |
84 | 80, 82, 83 | sylancr 414 |
. . . . . . 7
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β (πΊ β π):π΄βΆ{0, 1}) |
85 | | prexg 4213 |
. . . . . . . . . 10
β’ ((0
β β0 β§ 1 β β0) β {0, 1}
β V) |
86 | 51, 52, 85 | mp2an 426 |
. . . . . . . . 9
β’ {0, 1}
β V |
87 | 86 | a1i 9 |
. . . . . . . 8
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β {0, 1} β V) |
88 | | simpll 527 |
. . . . . . . 8
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β π΄ β π) |
89 | 87, 88 | elmapd 6664 |
. . . . . . 7
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β ((πΊ β π) β ({0, 1} βπ
π΄) β (πΊ β π):π΄βΆ{0, 1})) |
90 | 84, 89 | mpbird 167 |
. . . . . 6
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β (πΊ β π) β ({0, 1} βπ
π΄)) |
91 | 78, 79, 90 | rspcdva 2848 |
. . . . 5
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β DECID βπ₯ β π΄ ((πΊ β π)βπ₯) = 1) |
92 | | nfcv 2319 |
. . . . . . . . . 10
β’
β²π₯({0,
1} βπ π΄) |
93 | | nfra1 2508 |
. . . . . . . . . . 11
β’
β²π₯βπ₯ β π΄ (πβπ₯) = 1 |
94 | 93 | nfdc 1659 |
. . . . . . . . . 10
β’
β²π₯DECID βπ₯ β π΄ (πβπ₯) = 1 |
95 | 92, 94 | nfralxy 2515 |
. . . . . . . . 9
β’
β²π₯βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1 |
96 | 20, 95 | nfan 1565 |
. . . . . . . 8
β’
β²π₯(π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) |
97 | | nfv 1528 |
. . . . . . . 8
β’
β²π₯ π β (2o
βπ π΄) |
98 | 96, 97 | nfan 1565 |
. . . . . . 7
β’
β²π₯((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) |
99 | 81 | ad2antlr 489 |
. . . . . . . . . 10
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β π:π΄βΆ2o) |
100 | | fvco3 5589 |
. . . . . . . . . 10
β’ ((π:π΄βΆ2o β§ π₯ β π΄) β ((πΊ β π)βπ₯) = (πΊβ(πβπ₯))) |
101 | 99, 100 | sylancom 420 |
. . . . . . . . 9
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β ((πΊ β π)βπ₯) = (πΊβ(πβπ₯))) |
102 | 101 | eqeq1d 2186 |
. . . . . . . 8
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β (((πΊ β π)βπ₯) = 1 β (πΊβ(πβπ₯)) = 1)) |
103 | | f1of 5463 |
. . . . . . . . . . 11
β’ (πΊ:Οβ1-1-ontoββ0 β πΊ:ΟβΆβ0) |
104 | 46, 103 | mp1i 10 |
. . . . . . . . . 10
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β πΊ:ΟβΆβ0) |
105 | | omelon 4610 |
. . . . . . . . . . . . . 14
β’ Ο
β On |
106 | 105 | onelssi 4431 |
. . . . . . . . . . . . 13
β’
(2o β Ο β 2o β
Ο) |
107 | 13, 106 | mp1i 10 |
. . . . . . . . . . . 12
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β 2o β
Ο) |
108 | 99, 107 | fssd 5380 |
. . . . . . . . . . 11
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β π:π΄βΆΟ) |
109 | | simpr 110 |
. . . . . . . . . . 11
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β π₯ β π΄) |
110 | 108, 109 | ffvelcdmd 5654 |
. . . . . . . . . 10
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β (πβπ₯) β Ο) |
111 | 104, 110 | ffvelcdmd 5654 |
. . . . . . . . 9
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β (πΊβ(πβπ₯)) β
β0) |
112 | | f1ocnvfv 5782 |
. . . . . . . . . . . . 13
β’ ((πΊ:Οβ1-1-ontoββ0 β§ 1o β
Ο) β ((πΊβ1o) = 1 β (β‘πΊβ1) = 1o)) |
113 | 46, 59, 112 | mp2an 426 |
. . . . . . . . . . . 12
β’ ((πΊβ1o) = 1 β
(β‘πΊβ1) = 1o) |
114 | 44, 113 | ax-mp 5 |
. . . . . . . . . . 11
β’ (β‘πΊβ1) = 1o |
115 | 114 | eqeq2i 2188 |
. . . . . . . . . 10
β’ ((β‘πΊβ(πΊβ(πβπ₯))) = (β‘πΊβ1) β (β‘πΊβ(πΊβ(πβπ₯))) = 1o) |
116 | | f1of1 5462 |
. . . . . . . . . . . . 13
β’ (β‘πΊ:β0β1-1-ontoβΟ β β‘πΊ:β0β1-1βΟ) |
117 | 46, 47, 116 | mp2b 8 |
. . . . . . . . . . . 12
β’ β‘πΊ:β0β1-1βΟ |
118 | | f1fveq 5775 |
. . . . . . . . . . . 12
β’ ((β‘πΊ:β0β1-1βΟ β§ ((πΊβ(πβπ₯)) β β0 β§ 1 β
β0)) β ((β‘πΊβ(πΊβ(πβπ₯))) = (β‘πΊβ1) β (πΊβ(πβπ₯)) = 1)) |
119 | 117, 118 | mpan 424 |
. . . . . . . . . . 11
β’ (((πΊβ(πβπ₯)) β β0 β§ 1 β
β0) β ((β‘πΊβ(πΊβ(πβπ₯))) = (β‘πΊβ1) β (πΊβ(πβπ₯)) = 1)) |
120 | 52, 119 | mpan2 425 |
. . . . . . . . . 10
β’ ((πΊβ(πβπ₯)) β β0 β ((β‘πΊβ(πΊβ(πβπ₯))) = (β‘πΊβ1) β (πΊβ(πβπ₯)) = 1)) |
121 | 115, 120 | bitr3id 194 |
. . . . . . . . 9
β’ ((πΊβ(πβπ₯)) β β0 β ((β‘πΊβ(πΊβ(πβπ₯))) = 1o β (πΊβ(πβπ₯)) = 1)) |
122 | 111, 121 | syl 14 |
. . . . . . . 8
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β ((β‘πΊβ(πΊβ(πβπ₯))) = 1o β (πΊβ(πβπ₯)) = 1)) |
123 | | f1ocnvfv1 5780 |
. . . . . . . . . 10
β’ ((πΊ:Οβ1-1-ontoββ0 β§ (πβπ₯) β Ο) β (β‘πΊβ(πΊβ(πβπ₯))) = (πβπ₯)) |
124 | 46, 110, 123 | sylancr 414 |
. . . . . . . . 9
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β (β‘πΊβ(πΊβ(πβπ₯))) = (πβπ₯)) |
125 | 124 | eqeq1d 2186 |
. . . . . . . 8
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β ((β‘πΊβ(πΊβ(πβπ₯))) = 1o β (πβπ₯) = 1o)) |
126 | 102, 122,
125 | 3bitr2d 216 |
. . . . . . 7
β’ ((((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β§ π₯ β π΄) β (((πΊ β π)βπ₯) = 1 β (πβπ₯) = 1o)) |
127 | 98, 126 | ralbida 2471 |
. . . . . 6
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β (βπ₯ β π΄ ((πΊ β π)βπ₯) = 1 β βπ₯ β π΄ (πβπ₯) = 1o)) |
128 | 127 | dcbid 838 |
. . . . 5
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β (DECID
βπ₯ β π΄ ((πΊ β π)βπ₯) = 1 β DECID
βπ₯ β π΄ (πβπ₯) = 1o)) |
129 | 91, 128 | mpbid 147 |
. . . 4
β’ (((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β§ π β (2o
βπ π΄)) β DECID βπ₯ β π΄ (πβπ₯) = 1o) |
130 | 129 | ralrimiva 2550 |
. . 3
β’ ((π΄ β π β§ βπ β ({0, 1} βπ
π΄)DECID
βπ₯ β π΄ (πβπ₯) = 1) β βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o) |
131 | 74, 130 | impbida 596 |
. 2
β’ (π΄ β π β (βπ β (2o
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1o β βπ β ({0, 1}
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1)) |
132 | 1, 131 | bitrd 188 |
1
β’ (π΄ β π β (π΄ β WOmni β βπ β ({0, 1}
βπ π΄)DECID βπ₯ β π΄ (πβπ₯) = 1)) |