| Step | Hyp | Ref
| Expression |
| 1 | | iswomnimap 7232 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
| 2 | | fveq1 5557 |
. . . . . . . . 9
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → (𝑔‘𝑥) = ((◡𝐺 ∘ 𝑓)‘𝑥)) |
| 3 | 2 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → ((𝑔‘𝑥) = 1o ↔ ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o)) |
| 4 | 3 | ralbidv 2497 |
. . . . . . 7
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o)) |
| 5 | 4 | dcbid 839 |
. . . . . 6
⊢ (𝑔 = (◡𝐺 ∘ 𝑓) → (DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ DECID
∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o)) |
| 6 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) |
| 7 | | iswomninnlem.g |
. . . . . . . . . . 11
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| 8 | 7 | 012of 15640 |
. . . . . . . . . 10
⊢ (◡𝐺 ↾ {0, 1}):{0,
1}⟶2o |
| 9 | | elmapi 6729 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 𝐴) → 𝑓:𝐴⟶{0, 1}) |
| 10 | | fco2 5424 |
. . . . . . . . . 10
⊢ (((◡𝐺 ↾ {0, 1}):{0, 1}⟶2o
∧ 𝑓:𝐴⟶{0, 1}) → (◡𝐺 ∘ 𝑓):𝐴⟶2o) |
| 11 | 8, 9, 10 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 𝐴) → (◡𝐺 ∘ 𝑓):𝐴⟶2o) |
| 12 | 11 | adantl 277 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (◡𝐺 ∘ 𝑓):𝐴⟶2o) |
| 13 | | 2onn 6579 |
. . . . . . . . . 10
⊢
2o ∈ ω |
| 14 | 13 | a1i 9 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 2o
∈ ω) |
| 15 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝐴 ∈ 𝑉) |
| 16 | 14, 15 | elmapd 6721 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ((◡𝐺 ∘ 𝑓) ∈ (2o
↑𝑚 𝐴) ↔ (◡𝐺 ∘ 𝑓):𝐴⟶2o)) |
| 17 | 12, 16 | mpbird 167 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (◡𝐺 ∘ 𝑓) ∈ (2o
↑𝑚 𝐴)) |
| 18 | 17 | adantlr 477 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (◡𝐺 ∘ 𝑓) ∈ (2o
↑𝑚 𝐴)) |
| 19 | 5, 6, 18 | rspcdva 2873 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) →
DECID ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o) |
| 20 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
| 21 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(2o ↑𝑚
𝐴) |
| 22 | | nfra1 2528 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o |
| 23 | 22 | nfdc 1673 |
. . . . . . . . . 10
⊢
Ⅎ𝑥DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o |
| 24 | 21, 23 | nfralxy 2535 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o |
| 25 | 20, 24 | nfan 1579 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) |
| 26 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑓 ∈ ({0, 1}
↑𝑚 𝐴) |
| 27 | 25, 26 | nfan 1579 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) |
| 28 | 9 | ad2antlr 489 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑓:𝐴⟶{0, 1}) |
| 29 | | fvco3 5632 |
. . . . . . . . . 10
⊢ ((𝑓:𝐴⟶{0, 1} ∧ 𝑥 ∈ 𝐴) → ((◡𝐺 ∘ 𝑓)‘𝑥) = (◡𝐺‘(𝑓‘𝑥))) |
| 30 | 28, 29 | sylancom 420 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((◡𝐺 ∘ 𝑓)‘𝑥) = (◡𝐺‘(𝑓‘𝑥))) |
| 31 | 30 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((◡𝐺 ∘ 𝑓)‘𝑥) = 1o ↔ (◡𝐺‘(𝑓‘𝑥)) = 1o)) |
| 32 | | df-1o 6474 |
. . . . . . . . . . . 12
⊢
1o = suc ∅ |
| 33 | 32 | fveq2i 5561 |
. . . . . . . . . . 11
⊢ (𝐺‘1o) = (𝐺‘suc
∅) |
| 34 | | 0zd 9338 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 0 ∈ ℤ) |
| 35 | | peano1 4630 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ ω |
| 36 | 35 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ∅ ∈ ω) |
| 37 | 34, 7, 36 | frec2uzsucd 10493 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝐺‘suc
∅) = ((𝐺‘∅) + 1)) |
| 38 | 37 | mptru 1373 |
. . . . . . . . . . 11
⊢ (𝐺‘suc ∅) = ((𝐺‘∅) +
1) |
| 39 | 34, 7 | frec2uz0d 10491 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (𝐺‘∅) =
0) |
| 40 | 39 | mptru 1373 |
. . . . . . . . . . . . 13
⊢ (𝐺‘∅) =
0 |
| 41 | 40 | oveq1i 5932 |
. . . . . . . . . . . 12
⊢ ((𝐺‘∅) + 1) = (0 +
1) |
| 42 | | 0p1e1 9104 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
| 43 | 41, 42 | eqtri 2217 |
. . . . . . . . . . 11
⊢ ((𝐺‘∅) + 1) =
1 |
| 44 | 33, 38, 43 | 3eqtri 2221 |
. . . . . . . . . 10
⊢ (𝐺‘1o) =
1 |
| 45 | 44 | eqeq2i 2207 |
. . . . . . . . 9
⊢ ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘1o) ↔ (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = 1) |
| 46 | 7 | frechashgf1o 10520 |
. . . . . . . . . . . . 13
⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 47 | | f1ocnv 5517 |
. . . . . . . . . . . . 13
⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) |
| 48 | | f1of 5504 |
. . . . . . . . . . . . 13
⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) |
| 49 | 46, 47, 48 | mp2b 8 |
. . . . . . . . . . . 12
⊢ ◡𝐺:ℕ0⟶ω |
| 50 | 49 | a1i 9 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ◡𝐺:ℕ0⟶ω) |
| 51 | | 0nn0 9264 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
| 52 | | 1nn0 9265 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
| 53 | | prssi 3780 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
| 54 | 51, 52, 53 | mp2an 426 |
. . . . . . . . . . . 12
⊢ {0, 1}
⊆ ℕ0 |
| 55 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 56 | 28, 55 | ffvelcdmd 5698 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ {0, 1}) |
| 57 | 54, 56 | sselid 3181 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈
ℕ0) |
| 58 | 50, 57 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (◡𝐺‘(𝑓‘𝑥)) ∈ ω) |
| 59 | | 1onn 6578 |
. . . . . . . . . . 11
⊢
1o ∈ ω |
| 60 | | f1of1 5503 |
. . . . . . . . . . . . 13
⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω–1-1→ℕ0) |
| 61 | 46, 60 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝐺:ω–1-1→ℕ0 |
| 62 | | f1fveq 5819 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1→ℕ0 ∧ ((◡𝐺‘(𝑓‘𝑥)) ∈ ω ∧ 1o ∈
ω)) → ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘1o) ↔ (◡𝐺‘(𝑓‘𝑥)) = 1o)) |
| 63 | 61, 62 | mpan 424 |
. . . . . . . . . . 11
⊢ (((◡𝐺‘(𝑓‘𝑥)) ∈ ω ∧ 1o ∈
ω) → ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘1o) ↔ (◡𝐺‘(𝑓‘𝑥)) = 1o)) |
| 64 | 59, 63 | mpan2 425 |
. . . . . . . . . 10
⊢ ((◡𝐺‘(𝑓‘𝑥)) ∈ ω → ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘1o) ↔ (◡𝐺‘(𝑓‘𝑥)) = 1o)) |
| 65 | 58, 64 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝐺‘1o) ↔ (◡𝐺‘(𝑓‘𝑥)) = 1o)) |
| 66 | 45, 65 | bitr3id 194 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = 1 ↔ (◡𝐺‘(𝑓‘𝑥)) = 1o)) |
| 67 | | f1ocnvfv2 5825 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ (𝑓‘𝑥) ∈ ℕ0) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝑓‘𝑥)) |
| 68 | 46, 57, 67 | sylancr 414 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘(◡𝐺‘(𝑓‘𝑥))) = (𝑓‘𝑥)) |
| 69 | 68 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(◡𝐺‘(𝑓‘𝑥))) = 1 ↔ (𝑓‘𝑥) = 1)) |
| 70 | 31, 66, 69 | 3bitr2d 216 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((◡𝐺 ∘ 𝑓)‘𝑥) = 1o ↔ (𝑓‘𝑥) = 1)) |
| 71 | 27, 70 | ralbida 2491 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
| 72 | 71 | dcbid 839 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) →
(DECID ∀𝑥 ∈ 𝐴 ((◡𝐺 ∘ 𝑓)‘𝑥) = 1o ↔ DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
| 73 | 19, 72 | mpbid 147 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) |
| 74 | 73 | ralrimiva 2570 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) → ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) |
| 75 | | fveq1 5557 |
. . . . . . . . 9
⊢ (𝑓 = (𝐺 ∘ 𝑔) → (𝑓‘𝑥) = ((𝐺 ∘ 𝑔)‘𝑥)) |
| 76 | 75 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑓 = (𝐺 ∘ 𝑔) → ((𝑓‘𝑥) = 1 ↔ ((𝐺 ∘ 𝑔)‘𝑥) = 1)) |
| 77 | 76 | ralbidv 2497 |
. . . . . . 7
⊢ (𝑓 = (𝐺 ∘ 𝑔) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 ↔ ∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1)) |
| 78 | 77 | dcbid 839 |
. . . . . 6
⊢ (𝑓 = (𝐺 ∘ 𝑔) → (DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 ↔ DECID
∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1)) |
| 79 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) |
| 80 | 7 | 2o01f 15641 |
. . . . . . . 8
⊢ (𝐺 ↾
2o):2o⟶{0, 1} |
| 81 | | elmapi 6729 |
. . . . . . . . 9
⊢ (𝑔 ∈ (2o
↑𝑚 𝐴) → 𝑔:𝐴⟶2o) |
| 82 | 81 | adantl 277 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝑔:𝐴⟶2o) |
| 83 | | fco2 5424 |
. . . . . . . 8
⊢ (((𝐺 ↾
2o):2o⟶{0, 1} ∧ 𝑔:𝐴⟶2o) → (𝐺 ∘ 𝑔):𝐴⟶{0, 1}) |
| 84 | 80, 82, 83 | sylancr 414 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝐺 ∘ 𝑔):𝐴⟶{0, 1}) |
| 85 | | prexg 4244 |
. . . . . . . . . 10
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
∈ V) |
| 86 | 51, 52, 85 | mp2an 426 |
. . . . . . . . 9
⊢ {0, 1}
∈ V |
| 87 | 86 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → {0, 1} ∈ V) |
| 88 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝐴 ∈ 𝑉) |
| 89 | 87, 88 | elmapd 6721 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ((𝐺 ∘ 𝑔) ∈ ({0, 1} ↑𝑚
𝐴) ↔ (𝐺 ∘ 𝑔):𝐴⟶{0, 1})) |
| 90 | 84, 89 | mpbird 167 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝐺 ∘ 𝑔) ∈ ({0, 1} ↑𝑚
𝐴)) |
| 91 | 78, 79, 90 | rspcdva 2873 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → DECID ∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1) |
| 92 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑥({0,
1} ↑𝑚 𝐴) |
| 93 | | nfra1 2528 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 |
| 94 | 93 | nfdc 1673 |
. . . . . . . . . 10
⊢
Ⅎ𝑥DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 |
| 95 | 92, 94 | nfralxy 2535 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 |
| 96 | 20, 95 | nfan 1579 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) |
| 97 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑔 ∈ (2o
↑𝑚 𝐴) |
| 98 | 96, 97 | nfan 1579 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) |
| 99 | 81 | ad2antlr 489 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑔:𝐴⟶2o) |
| 100 | | fvco3 5632 |
. . . . . . . . . 10
⊢ ((𝑔:𝐴⟶2o ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝑔)‘𝑥) = (𝐺‘(𝑔‘𝑥))) |
| 101 | 99, 100 | sylancom 420 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝑔)‘𝑥) = (𝐺‘(𝑔‘𝑥))) |
| 102 | 101 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝑔)‘𝑥) = 1 ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
| 103 | | f1of 5504 |
. . . . . . . . . . 11
⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) |
| 104 | 46, 103 | mp1i 10 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝐺:ω⟶ℕ0) |
| 105 | | omelon 4645 |
. . . . . . . . . . . . . 14
⊢ ω
∈ On |
| 106 | 105 | onelssi 4464 |
. . . . . . . . . . . . 13
⊢
(2o ∈ ω → 2o ⊆
ω) |
| 107 | 13, 106 | mp1i 10 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 2o ⊆
ω) |
| 108 | 99, 107 | fssd 5420 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑔:𝐴⟶ω) |
| 109 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 110 | 108, 109 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ω) |
| 111 | 104, 110 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘(𝑔‘𝑥)) ∈
ℕ0) |
| 112 | | f1ocnvfv 5826 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈
ω) → ((𝐺‘1o) = 1 → (◡𝐺‘1) = 1o)) |
| 113 | 46, 59, 112 | mp2an 426 |
. . . . . . . . . . . 12
⊢ ((𝐺‘1o) = 1 →
(◡𝐺‘1) = 1o) |
| 114 | 44, 113 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (◡𝐺‘1) = 1o |
| 115 | 114 | eqeq2i 2207 |
. . . . . . . . . 10
⊢ ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (◡𝐺‘1) ↔ (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = 1o) |
| 116 | | f1of1 5503 |
. . . . . . . . . . . . 13
⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0–1-1→ω) |
| 117 | 46, 47, 116 | mp2b 8 |
. . . . . . . . . . . 12
⊢ ◡𝐺:ℕ0–1-1→ω |
| 118 | | f1fveq 5819 |
. . . . . . . . . . . 12
⊢ ((◡𝐺:ℕ0–1-1→ω ∧ ((𝐺‘(𝑔‘𝑥)) ∈ ℕ0 ∧ 1 ∈
ℕ0)) → ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (◡𝐺‘1) ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
| 119 | 117, 118 | mpan 424 |
. . . . . . . . . . 11
⊢ (((𝐺‘(𝑔‘𝑥)) ∈ ℕ0 ∧ 1 ∈
ℕ0) → ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (◡𝐺‘1) ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
| 120 | 52, 119 | mpan2 425 |
. . . . . . . . . 10
⊢ ((𝐺‘(𝑔‘𝑥)) ∈ ℕ0 → ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (◡𝐺‘1) ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
| 121 | 115, 120 | bitr3id 194 |
. . . . . . . . 9
⊢ ((𝐺‘(𝑔‘𝑥)) ∈ ℕ0 → ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = 1o ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
| 122 | 111, 121 | syl 14 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = 1o ↔ (𝐺‘(𝑔‘𝑥)) = 1)) |
| 123 | | f1ocnvfv1 5824 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ (𝑔‘𝑥) ∈ ω) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (𝑔‘𝑥)) |
| 124 | 46, 110, 123 | sylancr 414 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (◡𝐺‘(𝐺‘(𝑔‘𝑥))) = (𝑔‘𝑥)) |
| 125 | 124 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((◡𝐺‘(𝐺‘(𝑔‘𝑥))) = 1o ↔ (𝑔‘𝑥) = 1o)) |
| 126 | 102, 122,
125 | 3bitr2d 216 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝑔)‘𝑥) = 1 ↔ (𝑔‘𝑥) = 1o)) |
| 127 | 98, 126 | ralbida 2491 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
| 128 | 127 | dcbid 839 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (DECID
∀𝑥 ∈ 𝐴 ((𝐺 ∘ 𝑔)‘𝑥) = 1 ↔ DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
| 129 | 91, 128 | mpbid 147 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) |
| 130 | 129 | ralrimiva 2570 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o) |
| 131 | 74, 130 | impbida 596 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑔 ∈ (2o
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |
| 132 | 1, 131 | bitrd 188 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) |