ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctal GIF version

Theorem ctiunctal 12598
Description: Variation of ctiunct 12597 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
ctiunctal.a (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctiunctal.b (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
ctiunctal (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Distinct variable groups:   𝐴,,𝑥   𝐵,   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,)   𝐵(𝑥)   𝐹()   𝐺(𝑥,)

Proof of Theorem ctiunctal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ctiunctal.a . . 3 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
2 ctiunctal.b . . . . 5 (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
3 nfv 1539 . . . . . 6 𝑦 𝐺:ω–onto→(𝐵 ⊔ 1o)
4 nfcsb1v 3113 . . . . . . 7 𝑥𝑦 / 𝑥𝐺
5 nfcv 2336 . . . . . . 7 𝑥ω
6 nfcsb1v 3113 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵
7 nfcv 2336 . . . . . . . 8 𝑥1o
86, 7nfdju 7101 . . . . . . 7 𝑥(𝑦 / 𝑥𝐵 ⊔ 1o)
94, 5, 8nffo 5475 . . . . . 6 𝑥𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)
10 csbeq1a 3089 . . . . . . 7 (𝑥 = 𝑦𝐺 = 𝑦 / 𝑥𝐺)
11 eqidd 2194 . . . . . . 7 (𝑥 = 𝑦 → ω = ω)
12 csbeq1a 3089 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 djueq1 7099 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1412, 13syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1510, 11, 14foeq123d 5493 . . . . . 6 (𝑥 = 𝑦 → (𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)))
163, 9, 15cbvral 2722 . . . . 5 (∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
172, 16sylib 122 . . . 4 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
1817r19.21bi 2582 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
191, 18ctiunct 12597 . 2 (𝜑 → ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
20 nfcv 2336 . . . . 5 𝑦𝐵
2120, 6, 12cbviun 3949 . . . 4 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
22 djueq1 7099 . . . 4 ( 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵 → ( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
23 foeq3 5474 . . . 4 (( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o) → (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o)))
2421, 22, 23mp2b 8 . . 3 (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2524exbii 1616 . 2 (∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2619, 25sylibr 134 1 (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wral 2472  csb 3080   ciun 3912  ωcom 4622  ontowfo 5252  1oc1o 6462  cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  omiunct  12601
  Copyright terms: Public domain W3C validator