ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctal GIF version

Theorem ctiunctal 12658
Description: Variation of ctiunct 12657 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
ctiunctal.a (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctiunctal.b (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
ctiunctal (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Distinct variable groups:   𝐴,,𝑥   𝐵,   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,)   𝐵(𝑥)   𝐹()   𝐺(𝑥,)

Proof of Theorem ctiunctal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ctiunctal.a . . 3 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
2 ctiunctal.b . . . . 5 (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
3 nfv 1542 . . . . . 6 𝑦 𝐺:ω–onto→(𝐵 ⊔ 1o)
4 nfcsb1v 3117 . . . . . . 7 𝑥𝑦 / 𝑥𝐺
5 nfcv 2339 . . . . . . 7 𝑥ω
6 nfcsb1v 3117 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵
7 nfcv 2339 . . . . . . . 8 𝑥1o
86, 7nfdju 7108 . . . . . . 7 𝑥(𝑦 / 𝑥𝐵 ⊔ 1o)
94, 5, 8nffo 5479 . . . . . 6 𝑥𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)
10 csbeq1a 3093 . . . . . . 7 (𝑥 = 𝑦𝐺 = 𝑦 / 𝑥𝐺)
11 eqidd 2197 . . . . . . 7 (𝑥 = 𝑦 → ω = ω)
12 csbeq1a 3093 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 djueq1 7106 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1412, 13syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1510, 11, 14foeq123d 5497 . . . . . 6 (𝑥 = 𝑦 → (𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)))
163, 9, 15cbvral 2725 . . . . 5 (∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
172, 16sylib 122 . . . 4 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
1817r19.21bi 2585 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
191, 18ctiunct 12657 . 2 (𝜑 → ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
20 nfcv 2339 . . . . 5 𝑦𝐵
2120, 6, 12cbviun 3953 . . . 4 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
22 djueq1 7106 . . . 4 ( 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵 → ( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
23 foeq3 5478 . . . 4 (( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o) → (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o)))
2421, 22, 23mp2b 8 . . 3 (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2524exbii 1619 . 2 (∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2619, 25sylibr 134 1 (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1506  wral 2475  csb 3084   ciun 3916  ωcom 4626  ontowfo 5256  1oc1o 6467  cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by:  omiunct  12661
  Copyright terms: Public domain W3C validator