![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ctiunctal | GIF version |
Description: Variation of ctiunct 12454 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.) |
Ref | Expression |
---|---|
ctiunctal.a | ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) |
ctiunctal.b | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o)) |
Ref | Expression |
---|---|
ctiunctal | ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunctal.a | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) | |
2 | ctiunctal.b | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o)) | |
3 | nfv 1538 | . . . . . 6 ⊢ Ⅎ𝑦 𝐺:ω–onto→(𝐵 ⊔ 1o) | |
4 | nfcsb1v 3102 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐺 | |
5 | nfcv 2329 | . . . . . . 7 ⊢ Ⅎ𝑥ω | |
6 | nfcsb1v 3102 | . . . . . . . 8 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
7 | nfcv 2329 | . . . . . . . 8 ⊢ Ⅎ𝑥1o | |
8 | 6, 7 | nfdju 7054 | . . . . . . 7 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o) |
9 | 4, 5, 8 | nffo 5449 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o) |
10 | csbeq1a 3078 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐺 = ⦋𝑦 / 𝑥⦌𝐺) | |
11 | eqidd 2188 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ω = ω) | |
12 | csbeq1a 3078 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
13 | djueq1 7052 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 → (𝐵 ⊔ 1o) = (⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) | |
14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ⊔ 1o) = (⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
15 | 10, 11, 14 | foeq123d 5466 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o))) |
16 | 3, 9, 15 | cbvral 2711 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
17 | 2, 16 | sylib 122 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
18 | 17 | r19.21bi 2575 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
19 | 1, 18 | ctiunct 12454 | . 2 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
20 | nfcv 2329 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
21 | 20, 6, 12 | cbviun 3935 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
22 | djueq1 7052 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) = (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) | |
23 | foeq3 5448 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) = (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o) → (ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o))) | |
24 | 21, 22, 23 | mp2b 8 | . . 3 ⊢ (ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
25 | 24 | exbii 1615 | . 2 ⊢ (∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
26 | 19, 25 | sylibr 134 | 1 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∃wex 1502 ∀wral 2465 ⦋csb 3069 ∪ ciun 3898 ωcom 4601 –onto→wfo 5226 1oc1o 6423 ⊔ cdju 7049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 ax-arch 7943 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-xor 1386 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-frec 6405 df-1o 6430 df-er 6548 df-en 6754 df-dju 7050 df-inl 7059 df-inr 7060 df-case 7096 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-2 8991 df-n0 9190 df-z 9267 df-uz 9542 df-q 9633 df-rp 9667 df-fz 10022 df-fl 10283 df-mod 10336 df-seqfrec 10459 df-exp 10533 df-dvds 11808 |
This theorem is referenced by: omiunct 12458 |
Copyright terms: Public domain | W3C validator |