ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctal GIF version

Theorem ctiunctal 12374
Description: Variation of ctiunct 12373 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
ctiunctal.a (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctiunctal.b (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
ctiunctal (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Distinct variable groups:   𝐴,,𝑥   𝐵,   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,)   𝐵(𝑥)   𝐹()   𝐺(𝑥,)

Proof of Theorem ctiunctal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ctiunctal.a . . 3 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
2 ctiunctal.b . . . . 5 (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
3 nfv 1516 . . . . . 6 𝑦 𝐺:ω–onto→(𝐵 ⊔ 1o)
4 nfcsb1v 3078 . . . . . . 7 𝑥𝑦 / 𝑥𝐺
5 nfcv 2308 . . . . . . 7 𝑥ω
6 nfcsb1v 3078 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵
7 nfcv 2308 . . . . . . . 8 𝑥1o
86, 7nfdju 7007 . . . . . . 7 𝑥(𝑦 / 𝑥𝐵 ⊔ 1o)
94, 5, 8nffo 5409 . . . . . 6 𝑥𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)
10 csbeq1a 3054 . . . . . . 7 (𝑥 = 𝑦𝐺 = 𝑦 / 𝑥𝐺)
11 eqidd 2166 . . . . . . 7 (𝑥 = 𝑦 → ω = ω)
12 csbeq1a 3054 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 djueq1 7005 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1412, 13syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1510, 11, 14foeq123d 5426 . . . . . 6 (𝑥 = 𝑦 → (𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)))
163, 9, 15cbvral 2688 . . . . 5 (∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
172, 16sylib 121 . . . 4 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
1817r19.21bi 2554 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
191, 18ctiunct 12373 . 2 (𝜑 → ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
20 nfcv 2308 . . . . 5 𝑦𝐵
2120, 6, 12cbviun 3903 . . . 4 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
22 djueq1 7005 . . . 4 ( 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵 → ( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
23 foeq3 5408 . . . 4 (( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o) → (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o)))
2421, 22, 23mp2b 8 . . 3 (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2524exbii 1593 . 2 (∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2619, 25sylibr 133 1 (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wex 1480  wral 2444  csb 3045   ciun 3866  ωcom 4567  ontowfo 5186  1oc1o 6377  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-dvds 11728
This theorem is referenced by:  omiunct  12377
  Copyright terms: Public domain W3C validator