ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctal GIF version

Theorem ctiunctal 11990
Description: Variation of ctiunct 11989 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
Hypotheses
Ref Expression
ctiunctal.a (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
ctiunctal.b (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
ctiunctal (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Distinct variable groups:   𝐴,,𝑥   𝐵,   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,)   𝐵(𝑥)   𝐹()   𝐺(𝑥,)

Proof of Theorem ctiunctal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ctiunctal.a . . 3 (𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))
2 ctiunctal.b . . . . 5 (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))
3 nfv 1509 . . . . . 6 𝑦 𝐺:ω–onto→(𝐵 ⊔ 1o)
4 nfcsb1v 3040 . . . . . . 7 𝑥𝑦 / 𝑥𝐺
5 nfcv 2282 . . . . . . 7 𝑥ω
6 nfcsb1v 3040 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵
7 nfcv 2282 . . . . . . . 8 𝑥1o
86, 7nfdju 6935 . . . . . . 7 𝑥(𝑦 / 𝑥𝐵 ⊔ 1o)
94, 5, 8nffo 5352 . . . . . 6 𝑥𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)
10 csbeq1a 3016 . . . . . . 7 (𝑥 = 𝑦𝐺 = 𝑦 / 𝑥𝐺)
11 eqidd 2141 . . . . . . 7 (𝑥 = 𝑦 → ω = ω)
12 csbeq1a 3016 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 djueq1 6933 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1412, 13syl 14 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ⊔ 1o) = (𝑦 / 𝑥𝐵 ⊔ 1o))
1510, 11, 14foeq123d 5369 . . . . . 6 (𝑥 = 𝑦 → (𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o)))
163, 9, 15cbvral 2653 . . . . 5 (∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
172, 16sylib 121 . . . 4 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
1817r19.21bi 2523 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐺:ω–onto→(𝑦 / 𝑥𝐵 ⊔ 1o))
191, 18ctiunct 11989 . 2 (𝜑 → ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
20 nfcv 2282 . . . . 5 𝑦𝐵
2120, 6, 12cbviun 3858 . . . 4 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
22 djueq1 6933 . . . 4 ( 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵 → ( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
23 foeq3 5351 . . . 4 (( 𝑥𝐴 𝐵 ⊔ 1o) = ( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o) → (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o)))
2421, 22, 23mp2b 8 . . 3 (:ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2524exbii 1585 . 2 (∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o) ↔ ∃ :ω–onto→( 𝑦𝐴 𝑦 / 𝑥𝐵 ⊔ 1o))
2619, 25sylibr 133 1 (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1332  wex 1469  wral 2417  csb 3007   ciun 3821  ωcom 4512  ontowfo 5129  1oc1o 6314  cdju 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-er 6437  df-en 6643  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-dvds 11530
This theorem is referenced by:  omiunct  11993
  Copyright terms: Public domain W3C validator