Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunctal | GIF version |
Description: Variation of ctiunct 12373 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.) |
Ref | Expression |
---|---|
ctiunctal.a | ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) |
ctiunctal.b | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o)) |
Ref | Expression |
---|---|
ctiunctal | ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunctal.a | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) | |
2 | ctiunctal.b | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o)) | |
3 | nfv 1516 | . . . . . 6 ⊢ Ⅎ𝑦 𝐺:ω–onto→(𝐵 ⊔ 1o) | |
4 | nfcsb1v 3078 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐺 | |
5 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑥ω | |
6 | nfcsb1v 3078 | . . . . . . . 8 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
7 | nfcv 2308 | . . . . . . . 8 ⊢ Ⅎ𝑥1o | |
8 | 6, 7 | nfdju 7007 | . . . . . . 7 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o) |
9 | 4, 5, 8 | nffo 5409 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o) |
10 | csbeq1a 3054 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐺 = ⦋𝑦 / 𝑥⦌𝐺) | |
11 | eqidd 2166 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ω = ω) | |
12 | csbeq1a 3054 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
13 | djueq1 7005 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 → (𝐵 ⊔ 1o) = (⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) | |
14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ⊔ 1o) = (⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
15 | 10, 11, 14 | foeq123d 5426 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o))) |
16 | 3, 9, 15 | cbvral 2688 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o) ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
17 | 2, 16 | sylib 121 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
18 | 17 | r19.21bi 2554 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐺:ω–onto→(⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
19 | 1, 18 | ctiunct 12373 | . 2 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
20 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
21 | 20, 6, 12 | cbviun 3903 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
22 | djueq1 7005 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 → (∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) = (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) | |
23 | foeq3 5408 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) = (∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o) → (ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o))) | |
24 | 21, 22, 23 | mp2b 8 | . . 3 ⊢ (ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
25 | 24 | exbii 1593 | . 2 ⊢ (∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o) ↔ ∃ℎ ℎ:ω–onto→(∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ⊔ 1o)) |
26 | 19, 25 | sylibr 133 | 1 ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∀wral 2444 ⦋csb 3045 ∪ ciun 3866 ωcom 4567 –onto→wfo 5186 1oc1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-dvds 11728 |
This theorem is referenced by: omiunct 12377 |
Copyright terms: Public domain | W3C validator |