| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxp | GIF version | ||
| Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
| nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp 4679 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2341 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2341 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1587 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 7 | 6 | nfopab 4111 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2344 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2175 Ⅎwnfc 2334 {copab 4103 × cxp 4671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-opab 4105 df-xp 4679 |
| This theorem is referenced by: opeliunxp 4728 nfres 4958 mpomptsx 6273 dmmpossx 6275 fmpox 6276 disjxp1 6312 nfdju 7126 fsum2dlemstep 11664 fisumcom2 11668 fprod2dlemstep 11852 fprodcom2fi 11856 |
| Copyright terms: Public domain | W3C validator |