| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfxp | GIF version | ||
| Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfxp.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfxp.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xp 4669 | . 2 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
| 2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | 
| 4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 | 
| 6 | 3, 5 | nfan 1579 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) | 
| 7 | 6 | nfopab 4101 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | 
| 8 | 1, 7 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ∈ wcel 2167 Ⅎwnfc 2326 {copab 4093 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: opeliunxp 4718 nfres 4948 mpomptsx 6255 dmmpossx 6257 fmpox 6258 disjxp1 6294 nfdju 7108 fsum2dlemstep 11599 fisumcom2 11603 fprod2dlemstep 11787 fprodcom2fi 11791 | 
| Copyright terms: Public domain | W3C validator |