ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxp GIF version

Theorem nfxp 4636
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfxp.1 𝑥𝐴
nfxp.2 𝑥𝐵
Assertion
Ref Expression
nfxp 𝑥(𝐴 × 𝐵)

Proof of Theorem nfxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4615 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
2 nfxp.1 . . . . 5 𝑥𝐴
32nfcri 2306 . . . 4 𝑥 𝑦𝐴
4 nfxp.2 . . . . 5 𝑥𝐵
54nfcri 2306 . . . 4 𝑥 𝑧𝐵
63, 5nfan 1558 . . 3 𝑥(𝑦𝐴𝑧𝐵)
76nfopab 4055 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵)}
81, 7nfcxfr 2309 1 𝑥(𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wcel 2141  wnfc 2299  {copab 4047   × cxp 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-opab 4049  df-xp 4615
This theorem is referenced by:  opeliunxp  4664  nfres  4891  mpomptsx  6173  dmmpossx  6175  fmpox  6176  disjxp1  6212  nfdju  7015  fsum2dlemstep  11384  fisumcom2  11388  fprod2dlemstep  11572  fprodcom2fi  11576
  Copyright terms: Public domain W3C validator