![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfxp | GIF version |
Description: Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfxp.1 | ⊢ Ⅎ𝑥𝐴 |
nfxp.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfxp | ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 4634 | . 2 ⊢ (𝐴 × 𝐵) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
2 | nfxp.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2313 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfxp.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2313 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfan 1565 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
7 | 6 | nfopab 4073 | . 2 ⊢ Ⅎ𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥(𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2148 Ⅎwnfc 2306 {copab 4065 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-opab 4067 df-xp 4634 |
This theorem is referenced by: opeliunxp 4683 nfres 4911 mpomptsx 6200 dmmpossx 6202 fmpox 6203 disjxp1 6239 nfdju 7043 fsum2dlemstep 11444 fisumcom2 11448 fprod2dlemstep 11632 fprodcom2fi 11636 |
Copyright terms: Public domain | W3C validator |