ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfif GIF version

Theorem nfif 3560
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1 𝑥𝜑
nfif.2 𝑥𝐴
nfif.3 𝑥𝐵
Assertion
Ref Expression
nfif 𝑥if(𝜑, 𝐴, 𝐵)

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4 𝑥𝜑
21a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nfif.2 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 nfif.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfifd 3559 . 2 (⊤ → 𝑥if(𝜑, 𝐴, 𝐵))
87mptru 1362 1 𝑥if(𝜑, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1354  wnf 1458  wnfc 2304  ifcif 3532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-if 3533
This theorem is referenced by:  nfsum1  11332  nfsum  11333  sumrbdclem  11353  summodclem2a  11357  zsumdc  11360  fsum3  11363  isumss  11367  isumss2  11369  fsum3cvg2  11370  nfcprod1  11530  nfcprod  11531  cbvprod  11534  prodrbdclem  11547  prodmodclem2a  11552  zproddc  11555  fprodseq  11559  fprodntrivap  11560  prodssdc  11565  pcmpt  12308  pcmptdvds  12310
  Copyright terms: Public domain W3C validator