ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfif GIF version

Theorem nfif 3590
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1 𝑥𝜑
nfif.2 𝑥𝐴
nfif.3 𝑥𝐵
Assertion
Ref Expression
nfif 𝑥if(𝜑, 𝐴, 𝐵)

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4 𝑥𝜑
21a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nfif.2 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 nfif.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfifd 3589 . 2 (⊤ → 𝑥if(𝜑, 𝐴, 𝐵))
87mptru 1373 1 𝑥if(𝜑, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1474  wnfc 2326  ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-if 3563
This theorem is referenced by:  nfsum1  11538  nfsum  11539  sumrbdclem  11559  summodclem2a  11563  zsumdc  11566  fsum3  11569  isumss  11573  isumss2  11575  fsum3cvg2  11576  nfcprod1  11736  nfcprod  11737  cbvprod  11740  prodrbdclem  11753  prodmodclem2a  11758  zproddc  11761  fprodseq  11765  fprodntrivap  11766  prodssdc  11771  pcmpt  12537  pcmptdvds  12539
  Copyright terms: Public domain W3C validator