ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfif GIF version

Theorem nfif 3631
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1 𝑥𝜑
nfif.2 𝑥𝐴
nfif.3 𝑥𝐵
Assertion
Ref Expression
nfif 𝑥if(𝜑, 𝐴, 𝐵)

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4 𝑥𝜑
21a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nfif.2 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 nfif.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfifd 3630 . 2 (⊤ → 𝑥if(𝜑, 𝐴, 𝐵))
87mptru 1404 1 𝑥if(𝜑, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1396  wnf 1506  wnfc 2359  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-if 3603
This theorem is referenced by:  nfsum1  11875  nfsum  11876  sumrbdclem  11896  summodclem2a  11900  zsumdc  11903  fsum3  11906  isumss  11910  isumss2  11912  fsum3cvg2  11913  nfcprod1  12073  nfcprod  12074  cbvprod  12077  prodrbdclem  12090  prodmodclem2a  12095  zproddc  12098  fprodseq  12102  fprodntrivap  12103  prodssdc  12108  pcmpt  12874  pcmptdvds  12876
  Copyright terms: Public domain W3C validator