Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfif | GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 3547 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1352 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1344 Ⅎwnf 1448 Ⅎwnfc 2295 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-if 3521 |
This theorem is referenced by: nfsum1 11297 nfsum 11298 sumrbdclem 11318 summodclem2a 11322 zsumdc 11325 fsum3 11328 isumss 11332 isumss2 11334 fsum3cvg2 11335 nfcprod1 11495 nfcprod 11496 cbvprod 11499 prodrbdclem 11512 prodmodclem2a 11517 zproddc 11520 fprodseq 11524 fprodntrivap 11525 prodssdc 11530 pcmpt 12273 pcmptdvds 12275 |
Copyright terms: Public domain | W3C validator |