ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfif GIF version

Theorem nfif 3590
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1 𝑥𝜑
nfif.2 𝑥𝐴
nfif.3 𝑥𝐵
Assertion
Ref Expression
nfif 𝑥if(𝜑, 𝐴, 𝐵)

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4 𝑥𝜑
21a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nfif.2 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 nfif.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfifd 3589 . 2 (⊤ → 𝑥if(𝜑, 𝐴, 𝐵))
87mptru 1373 1 𝑥if(𝜑, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1474  wnfc 2326  ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-if 3563
This theorem is referenced by:  nfsum1  11540  nfsum  11541  sumrbdclem  11561  summodclem2a  11565  zsumdc  11568  fsum3  11571  isumss  11575  isumss2  11577  fsum3cvg2  11578  nfcprod1  11738  nfcprod  11739  cbvprod  11742  prodrbdclem  11755  prodmodclem2a  11760  zproddc  11763  fprodseq  11767  fprodntrivap  11768  prodssdc  11773  pcmpt  12539  pcmptdvds  12541
  Copyright terms: Public domain W3C validator