ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfif GIF version

Theorem nfif 3603
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1 𝑥𝜑
nfif.2 𝑥𝐴
nfif.3 𝑥𝐵
Assertion
Ref Expression
nfif 𝑥if(𝜑, 𝐴, 𝐵)

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4 𝑥𝜑
21a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nfif.2 . . . 4 𝑥𝐴
43a1i 9 . . 3 (⊤ → 𝑥𝐴)
5 nfif.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfifd 3602 . 2 (⊤ → 𝑥if(𝜑, 𝐴, 𝐵))
87mptru 1382 1 𝑥if(𝜑, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1374  wnf 1484  wnfc 2336  ifcif 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-if 3576
This theorem is referenced by:  nfsum1  11737  nfsum  11738  sumrbdclem  11758  summodclem2a  11762  zsumdc  11765  fsum3  11768  isumss  11772  isumss2  11774  fsum3cvg2  11775  nfcprod1  11935  nfcprod  11936  cbvprod  11939  prodrbdclem  11952  prodmodclem2a  11957  zproddc  11960  fprodseq  11964  fprodntrivap  11965  prodssdc  11970  pcmpt  12736  pcmptdvds  12738
  Copyright terms: Public domain W3C validator