| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfif | GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 3589 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1373 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1365 Ⅎwnf 1474 Ⅎwnfc 2326 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-if 3563 |
| This theorem is referenced by: nfsum1 11540 nfsum 11541 sumrbdclem 11561 summodclem2a 11565 zsumdc 11568 fsum3 11571 isumss 11575 isumss2 11577 fsum3cvg2 11578 nfcprod1 11738 nfcprod 11739 cbvprod 11742 prodrbdclem 11755 prodmodclem2a 11760 zproddc 11763 fprodseq 11767 fprodntrivap 11768 prodssdc 11773 pcmpt 12539 pcmptdvds 12541 |
| Copyright terms: Public domain | W3C validator |