ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo1 GIF version

Theorem nfmpo1 5985
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5923 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 5967 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2333 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  wnfc 2323  {coprab 5919  cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  ovmpos  6042  ov2gf  6043  ovmpodxf  6044  ovmpodf  6050  ovmpodv2  6052  xpcomco  6880  mapxpen  6904  cnmpt21  14459  cnmpt2t  14461  cnmptcom  14466
  Copyright terms: Public domain W3C validator