![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssoprab2b | GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4308. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2b | ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfoprab1 5968 | . . . 4 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
2 | nfoprab1 5968 | . . . 4 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | |
3 | 1, 2 | nfss 3173 | . . 3 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
4 | nfoprab2 5969 | . . . . 5 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | nfoprab2 5969 | . . . . 5 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | |
6 | 4, 5 | nfss 3173 | . . . 4 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
7 | nfoprab3 5970 | . . . . . 6 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
8 | nfoprab3 5970 | . . . . . 6 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | |
9 | 7, 8 | nfss 3173 | . . . . 5 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
10 | ssel 3174 | . . . . . 6 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓})) | |
11 | oprabid 5951 | . . . . . 6 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
12 | oprabid 5951 | . . . . . 6 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ 𝜓) | |
13 | 10, 11, 12 | 3imtr3g 204 | . . . . 5 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → (𝜑 → 𝜓)) |
14 | 9, 13 | alrimi 1533 | . . . 4 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → ∀𝑧(𝜑 → 𝜓)) |
15 | 6, 14 | alrimi 1533 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → ∀𝑦∀𝑧(𝜑 → 𝜓)) |
16 | 3, 15 | alrimi 1533 | . 2 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
17 | ssoprab2 5975 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) | |
18 | 16, 17 | impbii 126 | 1 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 ⊆ wss 3154 〈cop 3622 {coprab 5920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-oprab 5923 |
This theorem is referenced by: eqoprab2b 5977 |
Copyright terms: Public domain | W3C validator |