Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssoprab2b | GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4261. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2b | ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfoprab1 5902 | . . . 4 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
2 | nfoprab1 5902 | . . . 4 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | |
3 | 1, 2 | nfss 3140 | . . 3 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
4 | nfoprab2 5903 | . . . . 5 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | nfoprab2 5903 | . . . . 5 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | |
6 | 4, 5 | nfss 3140 | . . . 4 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
7 | nfoprab3 5904 | . . . . . 6 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
8 | nfoprab3 5904 | . . . . . 6 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | |
9 | 7, 8 | nfss 3140 | . . . . 5 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} |
10 | ssel 3141 | . . . . . 6 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓})) | |
11 | oprabid 5885 | . . . . . 6 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
12 | oprabid 5885 | . . . . . 6 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ 𝜓) | |
13 | 10, 11, 12 | 3imtr3g 203 | . . . . 5 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → (𝜑 → 𝜓)) |
14 | 9, 13 | alrimi 1515 | . . . 4 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → ∀𝑧(𝜑 → 𝜓)) |
15 | 6, 14 | alrimi 1515 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → ∀𝑦∀𝑧(𝜑 → 𝜓)) |
16 | 3, 15 | alrimi 1515 | . 2 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} → ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
17 | ssoprab2 5909 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) | |
18 | 16, 17 | impbii 125 | 1 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 ⊆ wss 3121 〈cop 3586 {coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-oprab 5857 |
This theorem is referenced by: eqoprab2b 5911 |
Copyright terms: Public domain | W3C validator |