![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssoprab2b | GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4278. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2b | ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfoprab1 5926 | . . . 4 ⊢ Ⅎ𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} | |
2 | nfoprab1 5926 | . . . 4 ⊢ Ⅎ𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} | |
3 | 1, 2 | nfss 3150 | . . 3 ⊢ Ⅎ𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
4 | nfoprab2 5927 | . . . . 5 ⊢ Ⅎ𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} | |
5 | nfoprab2 5927 | . . . . 5 ⊢ Ⅎ𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} | |
6 | 4, 5 | nfss 3150 | . . . 4 ⊢ Ⅎ𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
7 | nfoprab3 5928 | . . . . . 6 ⊢ Ⅎ𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} | |
8 | nfoprab3 5928 | . . . . . 6 ⊢ Ⅎ𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} | |
9 | 7, 8 | nfss 3150 | . . . . 5 ⊢ Ⅎ𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
10 | ssel 3151 | . . . . . 6 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})) | |
11 | oprabid 5909 | . . . . . 6 ⊢ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑) | |
12 | oprabid 5909 | . . . . . 6 ⊢ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ 𝜓) | |
13 | 10, 11, 12 | 3imtr3g 204 | . . . . 5 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → (𝜑 → 𝜓)) |
14 | 9, 13 | alrimi 1522 | . . . 4 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → ∀𝑧(𝜑 → 𝜓)) |
15 | 6, 14 | alrimi 1522 | . . 3 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → ∀𝑦∀𝑧(𝜑 → 𝜓)) |
16 | 3, 15 | alrimi 1522 | . 2 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
17 | ssoprab2 5933 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}) | |
18 | 16, 17 | impbii 126 | 1 ⊢ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 ∈ wcel 2148 ⊆ wss 3131 ⟨cop 3597 {coprab 5878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-oprab 5881 |
This theorem is referenced by: eqoprab2b 5935 |
Copyright terms: Public domain | W3C validator |