Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposoprab GIF version

Theorem tposoprab 6143
 Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposoprab.1 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
tposoprab tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem tposoprab
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tposoprab.1 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
21tposeqi 6140 . 2 tpos 𝐹 = tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
3 reldmoprab 5822 . . 3 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 dftpos3 6125 . . 3 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐})
53, 4ax-mp 5 . 2 tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐}
6 nfcv 2256 . . . . 5 𝑦𝑏, 𝑎
7 nfoprab2 5787 . . . . 5 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
8 nfcv 2256 . . . . 5 𝑦𝑐
96, 7, 8nfbr 3942 . . . 4 𝑦𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
10 nfcv 2256 . . . . 5 𝑥𝑏, 𝑎
11 nfoprab1 5786 . . . . 5 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
12 nfcv 2256 . . . . 5 𝑥𝑐
1310, 11, 12nfbr 3942 . . . 4 𝑥𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
14 nfv 1491 . . . 4 𝑎𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
15 nfv 1491 . . . 4 𝑏𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
16 opeq12 3675 . . . . . 6 ((𝑏 = 𝑥𝑎 = 𝑦) → ⟨𝑏, 𝑎⟩ = ⟨𝑥, 𝑦⟩)
1716ancoms 266 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ⟨𝑏, 𝑎⟩ = ⟨𝑥, 𝑦⟩)
1817breq1d 3907 . . . 4 ((𝑎 = 𝑦𝑏 = 𝑥) → (⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐 ↔ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐))
199, 13, 14, 15, 18cbvoprab12 5811 . . 3 {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑐⟩ ∣ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐}
20 nfcv 2256 . . . . 5 𝑧𝑥, 𝑦
21 nfoprab3 5788 . . . . 5 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
22 nfcv 2256 . . . . 5 𝑧𝑐
2320, 21, 22nfbr 3942 . . . 4 𝑧𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
24 nfv 1491 . . . 4 𝑐𝜑
25 breq2 3901 . . . . 5 (𝑐 = 𝑧 → (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐 ↔ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧))
26 df-br 3898 . . . . . 6 (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
27 oprabid 5769 . . . . . 6 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
2826, 27bitri 183 . . . . 5 (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧𝜑)
2925, 28syl6bb 195 . . . 4 (𝑐 = 𝑧 → (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐𝜑))
3023, 24, 29cbvoprab3 5813 . . 3 {⟨⟨𝑦, 𝑥⟩, 𝑐⟩ ∣ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
3119, 30eqtri 2136 . 2 {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
322, 5, 313eqtri 2140 1 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   = wceq 1314   ∈ wcel 1463  ⟨cop 3498   class class class wbr 3897  dom cdm 4507  Rel wrel 4512  {coprab 5741  tpos ctpos 6107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-fv 5099  df-oprab 5744  df-tpos 6108 This theorem is referenced by:  tposmpo  6144
 Copyright terms: Public domain W3C validator