ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc GIF version

Theorem infssuzcldc 11984
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzcldc (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzcldc
Dummy variables 𝑦 𝑤 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
3 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
4 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
51, 2, 3, 4infssuzex 11982 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝑆 𝑤 < 𝑦)))
6 ssrab2 3255 . . . . . . 7 {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ⊆ (ℤ𝑀)
72, 6eqsstri 3202 . . . . . 6 𝑆 ⊆ (ℤ𝑀)
8 uzssz 9577 . . . . . 6 (ℤ𝑀) ⊆ ℤ
97, 8sstri 3179 . . . . 5 𝑆 ⊆ ℤ
10 zssre 9290 . . . . 5 ℤ ⊆ ℝ
119, 10sstri 3179 . . . 4 𝑆 ⊆ ℝ
1211a1i 9 . . 3 (𝜑𝑆 ⊆ ℝ)
135, 12infrenegsupex 9624 . 2 (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
141, 2, 3, 4infssuzex 11982 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
1514, 12infsupneg 9626 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆}𝑦 < 𝑧)))
16 negeq 8180 . . . . . . . . . 10 (𝑤 = 𝑢 → -𝑤 = -𝑢)
1716eleq1d 2258 . . . . . . . . 9 (𝑤 = 𝑢 → (-𝑤𝑆 ↔ -𝑢𝑆))
1817elrab 2908 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢𝑆))
199sseli 3166 . . . . . . . . . 10 (-𝑢𝑆 → -𝑢 ∈ ℤ)
2019adantl 277 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → -𝑢 ∈ ℤ)
21 simpl 109 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℝ)
2221recnd 8016 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℂ)
23 znegclb 9316 . . . . . . . . . 10 (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2422, 23syl 14 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2520, 24mpbird 167 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℤ)
2618, 25sylbi 121 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} → 𝑢 ∈ ℤ)
2726ssriv 3174 . . . . . 6 {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ
2827a1i 9 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ)
2915, 28suprzclex 9381 . . . 4 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆})
30 nfrab1 2670 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤𝑆}
31 nfcv 2332 . . . . . 6 𝑤
32 nfcv 2332 . . . . . 6 𝑤 <
3330, 31, 32nfsup 7021 . . . . 5 𝑤sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3433nfneg 8184 . . . . . 6 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3534nfel1 2343 . . . . 5 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆
36 negeq 8180 . . . . . 6 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
3736eleq1d 2258 . . . . 5 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → (-𝑤𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3833, 31, 35, 37elrabf 2906 . . . 4 (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3929, 38sylib 122 . . 3 (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
4039simprd 114 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆)
4113, 40eqeltrd 2266 1 (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  {crab 2472  wss 3144  cfv 5235  (class class class)co 5896  supcsup 7011  infcinf 7012  cc 7839  cr 7840   < clt 8022  -cneg 8159  cz 9283  cuz 9558  ...cfz 10038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039  df-fzo 10173
This theorem is referenced by:  zsupssdc  11987  nnmindc  12067  lcmval  12095  lcmcllem  12099  odzcllem  12274  4sqlem13m  12435  4sqlem14  12436  4sqlem17  12439  4sqlem18  12440
  Copyright terms: Public domain W3C validator