| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infssuzcldc | GIF version | ||
| Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
| Ref | Expression |
|---|---|
| infssuzledc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| infssuzledc.s | ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} |
| infssuzledc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| infssuzledc.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) |
| Ref | Expression |
|---|---|
| infssuzcldc | ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infssuzledc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | infssuzledc.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} | |
| 3 | infssuzledc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | infssuzledc.dc | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) | |
| 5 | 1, 2, 3, 4 | infssuzex 10376 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤 ∈ 𝑆 𝑤 < 𝑦))) |
| 6 | ssrab2 3278 | . . . . . . 7 ⊢ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ⊆ (ℤ≥‘𝑀) | |
| 7 | 2, 6 | eqsstri 3225 | . . . . . 6 ⊢ 𝑆 ⊆ (ℤ≥‘𝑀) |
| 8 | uzssz 9668 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 9 | 7, 8 | sstri 3202 | . . . . 5 ⊢ 𝑆 ⊆ ℤ |
| 10 | zssre 9379 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 11 | 9, 10 | sstri 3202 | . . . 4 ⊢ 𝑆 ⊆ ℝ |
| 12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 13 | 5, 12 | infrenegsupex 9715 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < )) |
| 14 | 1, 2, 3, 4 | infssuzex 10376 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
| 15 | 14, 12 | infsupneg 9717 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}𝑦 < 𝑧))) |
| 16 | negeq 8265 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑢 → -𝑤 = -𝑢) | |
| 17 | 16 | eleq1d 2274 | . . . . . . . . 9 ⊢ (𝑤 = 𝑢 → (-𝑤 ∈ 𝑆 ↔ -𝑢 ∈ 𝑆)) |
| 18 | 17 | elrab 2929 | . . . . . . . 8 ⊢ (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆)) |
| 19 | 9 | sseli 3189 | . . . . . . . . . 10 ⊢ (-𝑢 ∈ 𝑆 → -𝑢 ∈ ℤ) |
| 20 | 19 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → -𝑢 ∈ ℤ) |
| 21 | simpl 109 | . . . . . . . . . . 11 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℝ) | |
| 22 | 21 | recnd 8101 | . . . . . . . . . 10 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℂ) |
| 23 | znegclb 9405 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ)) | |
| 24 | 22, 23 | syl 14 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ)) |
| 25 | 20, 24 | mpbird 167 | . . . . . . . 8 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℤ) |
| 26 | 18, 25 | sylbi 121 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} → 𝑢 ∈ ℤ) |
| 27 | 26 | ssriv 3197 | . . . . . 6 ⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ⊆ ℤ |
| 28 | 27 | a1i 9 | . . . . 5 ⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ⊆ ℤ) |
| 29 | 15, 28 | suprzclex 9471 | . . . 4 ⊢ (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}) |
| 30 | nfrab1 2686 | . . . . . 6 ⊢ Ⅎ𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} | |
| 31 | nfcv 2348 | . . . . . 6 ⊢ Ⅎ𝑤ℝ | |
| 32 | nfcv 2348 | . . . . . 6 ⊢ Ⅎ𝑤 < | |
| 33 | 30, 31, 32 | nfsup 7094 | . . . . 5 ⊢ Ⅎ𝑤sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) |
| 34 | 33 | nfneg 8269 | . . . . . 6 ⊢ Ⅎ𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) |
| 35 | 34 | nfel1 2359 | . . . . 5 ⊢ Ⅎ𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆 |
| 36 | negeq 8265 | . . . . . 6 ⊢ (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < )) | |
| 37 | 36 | eleq1d 2274 | . . . . 5 ⊢ (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) → (-𝑤 ∈ 𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) |
| 38 | 33, 31, 35, 37 | elrabf 2927 | . . . 4 ⊢ (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) |
| 39 | 29, 38 | sylib 122 | . . 3 ⊢ (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) |
| 40 | 39 | simprd 114 | . 2 ⊢ (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆) |
| 41 | 13, 40 | eqeltrd 2282 | 1 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2176 {crab 2488 ⊆ wss 3166 ‘cfv 5271 (class class class)co 5944 supcsup 7084 infcinf 7085 ℂcc 7923 ℝcr 7924 < clt 8107 -cneg 8244 ℤcz 9372 ℤ≥cuz 9648 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 |
| This theorem is referenced by: zsupssdc 10381 bitsfzolem 12265 nnmindc 12355 nninfctlemfo 12361 lcmval 12385 lcmcllem 12389 odzcllem 12565 4sqlem13m 12726 4sqlem14 12727 4sqlem17 12730 4sqlem18 12731 |
| Copyright terms: Public domain | W3C validator |