| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > infssuzcldc | GIF version | ||
| Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| infssuzledc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| infssuzledc.s | ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} | 
| infssuzledc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| infssuzledc.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) | 
| Ref | Expression | 
|---|---|
| infssuzcldc | ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | infssuzledc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | infssuzledc.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} | |
| 3 | infssuzledc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | infssuzledc.dc | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) | |
| 5 | 1, 2, 3, 4 | infssuzex 10323 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤 ∈ 𝑆 𝑤 < 𝑦))) | 
| 6 | ssrab2 3268 | . . . . . . 7 ⊢ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ⊆ (ℤ≥‘𝑀) | |
| 7 | 2, 6 | eqsstri 3215 | . . . . . 6 ⊢ 𝑆 ⊆ (ℤ≥‘𝑀) | 
| 8 | uzssz 9621 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 9 | 7, 8 | sstri 3192 | . . . . 5 ⊢ 𝑆 ⊆ ℤ | 
| 10 | zssre 9333 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 11 | 9, 10 | sstri 3192 | . . . 4 ⊢ 𝑆 ⊆ ℝ | 
| 12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ) | 
| 13 | 5, 12 | infrenegsupex 9668 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < )) | 
| 14 | 1, 2, 3, 4 | infssuzex 10323 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | 
| 15 | 14, 12 | infsupneg 9670 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}𝑦 < 𝑧))) | 
| 16 | negeq 8219 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑢 → -𝑤 = -𝑢) | |
| 17 | 16 | eleq1d 2265 | . . . . . . . . 9 ⊢ (𝑤 = 𝑢 → (-𝑤 ∈ 𝑆 ↔ -𝑢 ∈ 𝑆)) | 
| 18 | 17 | elrab 2920 | . . . . . . . 8 ⊢ (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆)) | 
| 19 | 9 | sseli 3179 | . . . . . . . . . 10 ⊢ (-𝑢 ∈ 𝑆 → -𝑢 ∈ ℤ) | 
| 20 | 19 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → -𝑢 ∈ ℤ) | 
| 21 | simpl 109 | . . . . . . . . . . 11 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℝ) | |
| 22 | 21 | recnd 8055 | . . . . . . . . . 10 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℂ) | 
| 23 | znegclb 9359 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ)) | |
| 24 | 22, 23 | syl 14 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ)) | 
| 25 | 20, 24 | mpbird 167 | . . . . . . . 8 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℤ) | 
| 26 | 18, 25 | sylbi 121 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} → 𝑢 ∈ ℤ) | 
| 27 | 26 | ssriv 3187 | . . . . . 6 ⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ⊆ ℤ | 
| 28 | 27 | a1i 9 | . . . . 5 ⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ⊆ ℤ) | 
| 29 | 15, 28 | suprzclex 9424 | . . . 4 ⊢ (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}) | 
| 30 | nfrab1 2677 | . . . . . 6 ⊢ Ⅎ𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} | |
| 31 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑤ℝ | |
| 32 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑤 < | |
| 33 | 30, 31, 32 | nfsup 7058 | . . . . 5 ⊢ Ⅎ𝑤sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) | 
| 34 | 33 | nfneg 8223 | . . . . . 6 ⊢ Ⅎ𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) | 
| 35 | 34 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆 | 
| 36 | negeq 8219 | . . . . . 6 ⊢ (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < )) | |
| 37 | 36 | eleq1d 2265 | . . . . 5 ⊢ (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) → (-𝑤 ∈ 𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) | 
| 38 | 33, 31, 35, 37 | elrabf 2918 | . . . 4 ⊢ (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) | 
| 39 | 29, 38 | sylib 122 | . . 3 ⊢ (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) | 
| 40 | 39 | simprd 114 | . 2 ⊢ (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆) | 
| 41 | 13, 40 | eqeltrd 2273 | 1 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 {crab 2479 ⊆ wss 3157 ‘cfv 5258 (class class class)co 5922 supcsup 7048 infcinf 7049 ℂcc 7877 ℝcr 7878 < clt 8061 -cneg 8198 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 | 
| This theorem is referenced by: zsupssdc 10328 bitsfzolem 12118 nnmindc 12201 nninfctlemfo 12207 lcmval 12231 lcmcllem 12235 odzcllem 12411 4sqlem13m 12572 4sqlem14 12573 4sqlem17 12576 4sqlem18 12577 | 
| Copyright terms: Public domain | W3C validator |