ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc GIF version

Theorem infssuzcldc 10378
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzcldc (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzcldc
Dummy variables 𝑦 𝑤 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
3 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
4 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
51, 2, 3, 4infssuzex 10376 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝑆 𝑤 < 𝑦)))
6 ssrab2 3278 . . . . . . 7 {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ⊆ (ℤ𝑀)
72, 6eqsstri 3225 . . . . . 6 𝑆 ⊆ (ℤ𝑀)
8 uzssz 9668 . . . . . 6 (ℤ𝑀) ⊆ ℤ
97, 8sstri 3202 . . . . 5 𝑆 ⊆ ℤ
10 zssre 9379 . . . . 5 ℤ ⊆ ℝ
119, 10sstri 3202 . . . 4 𝑆 ⊆ ℝ
1211a1i 9 . . 3 (𝜑𝑆 ⊆ ℝ)
135, 12infrenegsupex 9715 . 2 (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
141, 2, 3, 4infssuzex 10376 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
1514, 12infsupneg 9717 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆}𝑦 < 𝑧)))
16 negeq 8265 . . . . . . . . . 10 (𝑤 = 𝑢 → -𝑤 = -𝑢)
1716eleq1d 2274 . . . . . . . . 9 (𝑤 = 𝑢 → (-𝑤𝑆 ↔ -𝑢𝑆))
1817elrab 2929 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢𝑆))
199sseli 3189 . . . . . . . . . 10 (-𝑢𝑆 → -𝑢 ∈ ℤ)
2019adantl 277 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → -𝑢 ∈ ℤ)
21 simpl 109 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℝ)
2221recnd 8101 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℂ)
23 znegclb 9405 . . . . . . . . . 10 (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2422, 23syl 14 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2520, 24mpbird 167 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℤ)
2618, 25sylbi 121 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} → 𝑢 ∈ ℤ)
2726ssriv 3197 . . . . . 6 {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ
2827a1i 9 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ)
2915, 28suprzclex 9471 . . . 4 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆})
30 nfrab1 2686 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤𝑆}
31 nfcv 2348 . . . . . 6 𝑤
32 nfcv 2348 . . . . . 6 𝑤 <
3330, 31, 32nfsup 7094 . . . . 5 𝑤sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3433nfneg 8269 . . . . . 6 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3534nfel1 2359 . . . . 5 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆
36 negeq 8265 . . . . . 6 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
3736eleq1d 2274 . . . . 5 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → (-𝑤𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3833, 31, 35, 37elrabf 2927 . . . 4 (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3929, 38sylib 122 . . 3 (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
4039simprd 114 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆)
4113, 40eqeltrd 2282 1 (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2176  {crab 2488  wss 3166  cfv 5271  (class class class)co 5944  supcsup 7084  infcinf 7085  cc 7923  cr 7924   < clt 8107  -cneg 8244  cz 9372  cuz 9648  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265
This theorem is referenced by:  zsupssdc  10381  bitsfzolem  12265  nnmindc  12355  nninfctlemfo  12361  lcmval  12385  lcmcllem  12389  odzcllem  12565  4sqlem13m  12726  4sqlem14  12727  4sqlem17  12730  4sqlem18  12731
  Copyright terms: Public domain W3C validator