| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infssuzcldc | GIF version | ||
| Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
| Ref | Expression |
|---|---|
| infssuzledc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| infssuzledc.s | ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} |
| infssuzledc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| infssuzledc.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) |
| Ref | Expression |
|---|---|
| infssuzcldc | ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infssuzledc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | infssuzledc.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} | |
| 3 | infssuzledc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | infssuzledc.dc | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) | |
| 5 | 1, 2, 3, 4 | infssuzex 10340 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤 ∈ 𝑆 𝑤 < 𝑦))) |
| 6 | ssrab2 3269 | . . . . . . 7 ⊢ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} ⊆ (ℤ≥‘𝑀) | |
| 7 | 2, 6 | eqsstri 3216 | . . . . . 6 ⊢ 𝑆 ⊆ (ℤ≥‘𝑀) |
| 8 | uzssz 9638 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 9 | 7, 8 | sstri 3193 | . . . . 5 ⊢ 𝑆 ⊆ ℤ |
| 10 | zssre 9350 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 11 | 9, 10 | sstri 3193 | . . . 4 ⊢ 𝑆 ⊆ ℝ |
| 12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 13 | 5, 12 | infrenegsupex 9685 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < )) |
| 14 | 1, 2, 3, 4 | infssuzex 10340 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
| 15 | 14, 12 | infsupneg 9687 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}𝑦 < 𝑧))) |
| 16 | negeq 8236 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑢 → -𝑤 = -𝑢) | |
| 17 | 16 | eleq1d 2265 | . . . . . . . . 9 ⊢ (𝑤 = 𝑢 → (-𝑤 ∈ 𝑆 ↔ -𝑢 ∈ 𝑆)) |
| 18 | 17 | elrab 2920 | . . . . . . . 8 ⊢ (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆)) |
| 19 | 9 | sseli 3180 | . . . . . . . . . 10 ⊢ (-𝑢 ∈ 𝑆 → -𝑢 ∈ ℤ) |
| 20 | 19 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → -𝑢 ∈ ℤ) |
| 21 | simpl 109 | . . . . . . . . . . 11 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℝ) | |
| 22 | 21 | recnd 8072 | . . . . . . . . . 10 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℂ) |
| 23 | znegclb 9376 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ)) | |
| 24 | 22, 23 | syl 14 | . . . . . . . . 9 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ)) |
| 25 | 20, 24 | mpbird 167 | . . . . . . . 8 ⊢ ((𝑢 ∈ ℝ ∧ -𝑢 ∈ 𝑆) → 𝑢 ∈ ℤ) |
| 26 | 18, 25 | sylbi 121 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} → 𝑢 ∈ ℤ) |
| 27 | 26 | ssriv 3188 | . . . . . 6 ⊢ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ⊆ ℤ |
| 28 | 27 | a1i 9 | . . . . 5 ⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ⊆ ℤ) |
| 29 | 15, 28 | suprzclex 9441 | . . . 4 ⊢ (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}) |
| 30 | nfrab1 2677 | . . . . . 6 ⊢ Ⅎ𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} | |
| 31 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑤ℝ | |
| 32 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑤 < | |
| 33 | 30, 31, 32 | nfsup 7067 | . . . . 5 ⊢ Ⅎ𝑤sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) |
| 34 | 33 | nfneg 8240 | . . . . . 6 ⊢ Ⅎ𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) |
| 35 | 34 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆 |
| 36 | negeq 8236 | . . . . . 6 ⊢ (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < )) | |
| 37 | 36 | eleq1d 2265 | . . . . 5 ⊢ (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) → (-𝑤 ∈ 𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) |
| 38 | 33, 31, 35, 37 | elrabf 2918 | . . . 4 ⊢ (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) |
| 39 | 29, 38 | sylib 122 | . . 3 ⊢ (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆)) |
| 40 | 39 | simprd 114 | . 2 ⊢ (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ 𝑆}, ℝ, < ) ∈ 𝑆) |
| 41 | 13, 40 | eqeltrd 2273 | 1 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 {crab 2479 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5925 supcsup 7057 infcinf 7058 ℂcc 7894 ℝcr 7895 < clt 8078 -cneg 8215 ℤcz 9343 ℤ≥cuz 9618 ...cfz 10100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 |
| This theorem is referenced by: zsupssdc 10345 bitsfzolem 12136 nnmindc 12226 nninfctlemfo 12232 lcmval 12256 lcmcllem 12260 odzcllem 12436 4sqlem13m 12597 4sqlem14 12598 4sqlem17 12601 4sqlem18 12602 |
| Copyright terms: Public domain | W3C validator |