ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc GIF version

Theorem infssuzcldc 11286
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzcldc (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzcldc
Dummy variables 𝑦 𝑤 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
3 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
4 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
51, 2, 3, 4infssuzex 11284 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝑆 𝑤 < 𝑦)))
6 ssrab2 3107 . . . . . . 7 {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ⊆ (ℤ𝑀)
72, 6eqsstri 3057 . . . . . 6 𝑆 ⊆ (ℤ𝑀)
8 uzssz 9099 . . . . . 6 (ℤ𝑀) ⊆ ℤ
97, 8sstri 3035 . . . . 5 𝑆 ⊆ ℤ
10 zssre 8818 . . . . 5 ℤ ⊆ ℝ
119, 10sstri 3035 . . . 4 𝑆 ⊆ ℝ
1211a1i 9 . . 3 (𝜑𝑆 ⊆ ℝ)
135, 12infrenegsupex 9143 . 2 (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
141, 2, 3, 4infssuzex 11284 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
1514, 12infsupneg 9145 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆}𝑦 < 𝑧)))
16 negeq 7736 . . . . . . . . . 10 (𝑤 = 𝑢 → -𝑤 = -𝑢)
1716eleq1d 2157 . . . . . . . . 9 (𝑤 = 𝑢 → (-𝑤𝑆 ↔ -𝑢𝑆))
1817elrab 2772 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢𝑆))
199sseli 3022 . . . . . . . . . 10 (-𝑢𝑆 → -𝑢 ∈ ℤ)
2019adantl 272 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → -𝑢 ∈ ℤ)
21 simpl 108 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℝ)
2221recnd 7577 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℂ)
23 znegclb 8844 . . . . . . . . . 10 (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2422, 23syl 14 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2520, 24mpbird 166 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℤ)
2618, 25sylbi 120 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} → 𝑢 ∈ ℤ)
2726ssriv 3030 . . . . . 6 {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ
2827a1i 9 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ)
2915, 28suprzclex 8905 . . . 4 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆})
30 nfrab1 2547 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤𝑆}
31 nfcv 2229 . . . . . 6 𝑤
32 nfcv 2229 . . . . . 6 𝑤 <
3330, 31, 32nfsup 6741 . . . . 5 𝑤sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3433nfneg 7740 . . . . . 6 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3534nfel1 2240 . . . . 5 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆
36 negeq 7736 . . . . . 6 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
3736eleq1d 2157 . . . . 5 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → (-𝑤𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3833, 31, 35, 37elrabf 2770 . . . 4 (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3929, 38sylib 121 . . 3 (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
4039simprd 113 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆)
4113, 40eqeltrd 2165 1 (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 781   = wceq 1290  wcel 1439  {crab 2364  wss 3000  cfv 5028  (class class class)co 5666  supcsup 6731  infcinf 6732  cc 7409  cr 7410   < clt 7583  -cneg 7715  cz 8811  cuz 9080  ...cfz 9485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-po 4132  df-iso 4133  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-sup 6733  df-inf 6734  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-fz 9486  df-fzo 9615
This theorem is referenced by:  lcmval  11384  lcmcllem  11388
  Copyright terms: Public domain W3C validator