ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc GIF version

Theorem infssuzcldc 11893
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzcldc (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzcldc
Dummy variables 𝑦 𝑤 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
3 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
4 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
51, 2, 3, 4infssuzex 11891 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝑆 𝑤 < 𝑦)))
6 ssrab2 3232 . . . . . . 7 {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ⊆ (ℤ𝑀)
72, 6eqsstri 3179 . . . . . 6 𝑆 ⊆ (ℤ𝑀)
8 uzssz 9493 . . . . . 6 (ℤ𝑀) ⊆ ℤ
97, 8sstri 3156 . . . . 5 𝑆 ⊆ ℤ
10 zssre 9206 . . . . 5 ℤ ⊆ ℝ
119, 10sstri 3156 . . . 4 𝑆 ⊆ ℝ
1211a1i 9 . . 3 (𝜑𝑆 ⊆ ℝ)
135, 12infrenegsupex 9540 . 2 (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
141, 2, 3, 4infssuzex 11891 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
1514, 12infsupneg 9542 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆}𝑦 < 𝑧)))
16 negeq 8099 . . . . . . . . . 10 (𝑤 = 𝑢 → -𝑤 = -𝑢)
1716eleq1d 2239 . . . . . . . . 9 (𝑤 = 𝑢 → (-𝑤𝑆 ↔ -𝑢𝑆))
1817elrab 2886 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢𝑆))
199sseli 3143 . . . . . . . . . 10 (-𝑢𝑆 → -𝑢 ∈ ℤ)
2019adantl 275 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → -𝑢 ∈ ℤ)
21 simpl 108 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℝ)
2221recnd 7935 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℂ)
23 znegclb 9232 . . . . . . . . . 10 (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2422, 23syl 14 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2520, 24mpbird 166 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℤ)
2618, 25sylbi 120 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} → 𝑢 ∈ ℤ)
2726ssriv 3151 . . . . . 6 {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ
2827a1i 9 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ)
2915, 28suprzclex 9297 . . . 4 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆})
30 nfrab1 2649 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤𝑆}
31 nfcv 2312 . . . . . 6 𝑤
32 nfcv 2312 . . . . . 6 𝑤 <
3330, 31, 32nfsup 6965 . . . . 5 𝑤sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3433nfneg 8103 . . . . . 6 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3534nfel1 2323 . . . . 5 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆
36 negeq 8099 . . . . . 6 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
3736eleq1d 2239 . . . . 5 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → (-𝑤𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3833, 31, 35, 37elrabf 2884 . . . 4 (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3929, 38sylib 121 . . 3 (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
4039simprd 113 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆)
4113, 40eqeltrd 2247 1 (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wcel 2141  {crab 2452  wss 3121  cfv 5196  (class class class)co 5850  supcsup 6955  infcinf 6956  cc 7759  cr 7760   < clt 7941  -cneg 8078  cz 9199  cuz 9474  ...cfz 9952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-fzo 10086
This theorem is referenced by:  zsupssdc  11896  nnmindc  11976  lcmval  12004  lcmcllem  12008  odzcllem  12183
  Copyright terms: Public domain W3C validator