Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12d GIF version

Theorem uneq12d 3231
 Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
uneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
uneq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem uneq12d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 uneq12 3225 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2anc 408 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331   ∪ cun 3069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075 This theorem is referenced by:  disjpr2  3587  diftpsn3  3661  iunxprg  3893  undifexmid  4117  exmidundif  4129  exmidundifim  4130  suceq  4324  rnpropg  5018  fntpg  5179  foun  5386  fnimapr  5481  fprg  5603  fsnunfv  5621  fsnunres  5622  tfrlemi1  6229  tfr1onlemaccex  6245  tfrcllemaccex  6258  ereq1  6436  undifdc  6812  unfiin  6814  djueq12  6924  fztp  9872  fzsuc2  9873  fseq1p1m1  9888  ennnfonelemg  11929  ennnfonelemp1  11932  ennnfonelem1  11933  ennnfonelemnn0  11948  setsvalg  12005  setsfun0  12011  setsresg  12013  setsslid  12025  exmid1stab  13302
 Copyright terms: Public domain W3C validator