Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | uneq12 3271 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∪ cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: disjpr2 3640 diftpsn3 3714 iunxprg 3946 undifexmid 4172 exmidundif 4185 exmidundifim 4186 suceq 4380 rnpropg 5083 fntpg 5244 foun 5451 fnimapr 5546 fprg 5668 fsnunfv 5686 fsnunres 5687 tfrlemi1 6300 tfr1onlemaccex 6316 tfrcllemaccex 6329 ereq1 6508 undifdc 6889 unfiin 6891 djueq12 7004 fztp 10013 fzsuc2 10014 fseq1p1m1 10029 ennnfonelemg 12336 ennnfonelemp1 12339 ennnfonelem1 12340 ennnfonelemnn0 12355 setsvalg 12424 setsfun0 12430 setsresg 12432 setsslid 12444 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |