Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | uneq12 3282 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 |
This theorem is referenced by: disjpr2 3653 diftpsn3 3730 iunxprg 3962 undifexmid 4188 exmidundif 4201 exmidundifim 4202 suceq 4396 rnpropg 5100 fntpg 5264 foun 5472 fnimapr 5568 fprg 5691 fsnunfv 5709 fsnunres 5710 tfrlemi1 6323 tfr1onlemaccex 6339 tfrcllemaccex 6352 ereq1 6532 undifdc 6913 unfiin 6915 djueq12 7028 fztp 10048 fzsuc2 10049 fseq1p1m1 10064 ennnfonelemg 12371 ennnfonelemp1 12374 ennnfonelem1 12375 ennnfonelemnn0 12390 setsvalg 12459 setsfun0 12465 setsresg 12467 setsslid 12479 exmid1stab 14310 |
Copyright terms: Public domain | W3C validator |