| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | uneq12 3353 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: disjpr2 3730 diftpsn3 3809 iunxprg 4046 undifexmid 4277 exmidundif 4290 exmidundifim 4291 exmid1stab 4292 suceq 4493 rnpropg 5208 fntpg 5377 foun 5593 fnimapr 5696 fprg 5826 fsnunfv 5844 fsnunres 5845 tfrlemi1 6484 tfr1onlemaccex 6500 tfrcllemaccex 6513 ereq1 6695 undifdc 7094 unfiin 7096 djueq12 7214 fztp 10282 fzsuc2 10283 fseq1p1m1 10298 ennnfonelemg 12982 ennnfonelemp1 12985 ennnfonelem1 12986 ennnfonelemnn0 13001 setsvalg 13070 setsfun0 13076 setsresg 13078 setsslid 13091 prdsex 13310 prdsval 13314 psrval 14638 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |