| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | uneq12 3326 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 |
| This theorem is referenced by: disjpr2 3701 diftpsn3 3779 iunxprg 4013 undifexmid 4244 exmidundif 4257 exmidundifim 4258 exmid1stab 4259 suceq 4456 rnpropg 5170 fntpg 5338 foun 5552 fnimapr 5651 fprg 5779 fsnunfv 5797 fsnunres 5798 tfrlemi1 6430 tfr1onlemaccex 6446 tfrcllemaccex 6459 ereq1 6639 undifdc 7035 unfiin 7037 djueq12 7155 fztp 10215 fzsuc2 10216 fseq1p1m1 10231 ennnfonelemg 12844 ennnfonelemp1 12847 ennnfonelem1 12848 ennnfonelemnn0 12863 setsvalg 12932 setsfun0 12938 setsresg 12940 setsslid 12953 prdsex 13171 prdsval 13175 psrval 14498 lgsquadlem2 15625 |
| Copyright terms: Public domain | W3C validator |