![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | uneq12 3164 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 404 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∪ cun 3011 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 |
This theorem is referenced by: disjpr2 3526 diftpsn3 3600 undifexmid 4049 exmidundif 4058 exmidundifim 4059 suceq 4253 rnpropg 4944 fntpg 5104 foun 5307 fnimapr 5399 fprg 5519 fsnunfv 5537 fsnunres 5538 tfrlemi1 6135 tfr1onlemaccex 6151 tfrcllemaccex 6164 ereq1 6339 undifdc 6714 unfiin 6716 djueq12 6812 fztp 9641 fzsuc2 9642 fseq1p1m1 9657 setsvalg 11689 setsfun0 11695 setsresg 11697 setsslid 11709 |
Copyright terms: Public domain | W3C validator |