| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | uneq12 3353 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: disjpr2 3730 diftpsn3 3808 iunxprg 4045 undifexmid 4276 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 suceq 4490 rnpropg 5204 fntpg 5373 foun 5587 fnimapr 5687 fprg 5815 fsnunfv 5833 fsnunres 5834 tfrlemi1 6468 tfr1onlemaccex 6484 tfrcllemaccex 6497 ereq1 6677 undifdc 7074 unfiin 7076 djueq12 7194 fztp 10262 fzsuc2 10263 fseq1p1m1 10278 ennnfonelemg 12960 ennnfonelemp1 12963 ennnfonelem1 12964 ennnfonelemnn0 12979 setsvalg 13048 setsfun0 13054 setsresg 13056 setsslid 13069 prdsex 13288 prdsval 13292 psrval 14615 lgsquadlem2 15742 |
| Copyright terms: Public domain | W3C validator |