ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12d GIF version

Theorem uneq12d 3292
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
uneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
uneq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem uneq12d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 uneq12 3286 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135
This theorem is referenced by:  disjpr2  3658  diftpsn3  3735  iunxprg  3969  undifexmid  4195  exmidundif  4208  exmidundifim  4209  exmid1stab  4210  suceq  4404  rnpropg  5110  fntpg  5274  foun  5482  fnimapr  5578  fprg  5701  fsnunfv  5719  fsnunres  5720  tfrlemi1  6335  tfr1onlemaccex  6351  tfrcllemaccex  6364  ereq1  6544  undifdc  6925  unfiin  6927  djueq12  7040  fztp  10080  fzsuc2  10081  fseq1p1m1  10096  ennnfonelemg  12406  ennnfonelemp1  12409  ennnfonelem1  12410  ennnfonelemnn0  12425  setsvalg  12494  setsfun0  12500  setsresg  12502  setsslid  12515  prdsex  12723
  Copyright terms: Public domain W3C validator