| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | uneq12 3312 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: disjpr2 3686 diftpsn3 3763 iunxprg 3997 undifexmid 4226 exmidundif 4239 exmidundifim 4240 exmid1stab 4241 suceq 4437 rnpropg 5149 fntpg 5314 foun 5523 fnimapr 5621 fprg 5745 fsnunfv 5763 fsnunres 5764 tfrlemi1 6390 tfr1onlemaccex 6406 tfrcllemaccex 6419 ereq1 6599 undifdc 6985 unfiin 6987 djueq12 7105 fztp 10153 fzsuc2 10154 fseq1p1m1 10169 ennnfonelemg 12620 ennnfonelemp1 12623 ennnfonelem1 12624 ennnfonelemnn0 12639 setsvalg 12708 setsfun0 12714 setsresg 12716 setsslid 12729 prdsex 12940 psrval 14220 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |