![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12d | GIF version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | uneq12 3286 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 |
This theorem is referenced by: disjpr2 3658 diftpsn3 3735 iunxprg 3969 undifexmid 4195 exmidundif 4208 exmidundifim 4209 exmid1stab 4210 suceq 4404 rnpropg 5110 fntpg 5274 foun 5482 fnimapr 5578 fprg 5701 fsnunfv 5719 fsnunres 5720 tfrlemi1 6335 tfr1onlemaccex 6351 tfrcllemaccex 6364 ereq1 6544 undifdc 6925 unfiin 6927 djueq12 7040 fztp 10080 fzsuc2 10081 fseq1p1m1 10096 ennnfonelemg 12406 ennnfonelemp1 12409 ennnfonelem1 12410 ennnfonelemnn0 12425 setsvalg 12494 setsfun0 12500 setsresg 12502 setsslid 12515 prdsex 12723 |
Copyright terms: Public domain | W3C validator |