ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringelnzr GIF version

Theorem ringelnzr 13531
Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.)
Hypotheses
Ref Expression
ringelnzr.z 0 = (0g𝑅)
ringelnzr.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
ringelnzr ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing)

Proof of Theorem ringelnzr
StepHypRef Expression
1 simpl 109 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
2 eldifsni 3736 . . . 4 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋0 )
32adantl 277 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋0 )
4 eldifi 3272 . . . . . 6 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋𝐵)
54adantl 277 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋𝐵)
6 ringelnzr.b . . . . . . 7 𝐵 = (Base‘𝑅)
7 ringelnzr.z . . . . . . 7 0 = (0g𝑅)
86, 7ring0cl 13372 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
98adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 0𝐵)
10 eqid 2189 . . . . . 6 (1r𝑅) = (1r𝑅)
116, 10, 7ring1eq0 13397 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵0𝐵) → ((1r𝑅) = 0𝑋 = 0 ))
121, 5, 9, 11syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → ((1r𝑅) = 0𝑋 = 0 ))
1312necon3d 2404 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑋0 → (1r𝑅) ≠ 0 ))
143, 13mpd 13 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ≠ 0 )
1510, 7isnzr 13528 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ))
161, 14, 15sylanbrc 417 1 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wne 2360  cdif 3141  {csn 3607  cfv 5235  Basecbs 12511  0gc0g 12758  1rcur 13310  Ringcrg 13347  NzRingcnzr 13526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-mgp 13272  df-ur 13311  df-ring 13349  df-nzr 13527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator