| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nzrnz | GIF version | ||
| Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrnz | ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 2 | isnzr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 14145 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| 4 | 3 | simprbi 275 | 1 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ‘cfv 5318 0gc0g 13289 1rcur 13922 Ringcrg 13959 NzRingcnzr 14143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-nzr 14144 |
| This theorem is referenced by: nzrunit 14152 lringnz 14159 subrgnzr 14206 rrgnz 14232 |
| Copyright terms: Public domain | W3C validator |