ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrnz GIF version

Theorem nzrnz 13915
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
nzrnz (𝑅 ∈ NzRing → 10 )

Proof of Theorem nzrnz
StepHypRef Expression
1 isnzr.o . . 3 1 = (1r𝑅)
2 isnzr.z . . 3 0 = (0g𝑅)
31, 2isnzr 13914 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
43simprbi 275 1 (𝑅 ∈ NzRing → 10 )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wne 2375  cfv 5270  0gc0g 13059  1rcur 13692  Ringcrg 13729  NzRingcnzr 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-nzr 13913
This theorem is referenced by:  nzrunit  13921  lringnz  13928  subrgnzr  13975  rrgnz  14001
  Copyright terms: Public domain W3C validator