| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onelssi | GIF version | ||
| Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onelssi | ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onelss 4423 | . 2 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 Oncon0 4399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 |
| This theorem is referenced by: onelini 4466 oneluni 4467 omp1eomlem 7169 enumctlemm 7189 ennnfonelemdc 12641 ctinfom 12670 2o01f 15725 isomninnlem 15761 iswomninnlem 15780 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |