ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelssi GIF version

Theorem onelssi 4519
Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onelssi (𝐵𝐴𝐵𝐴)

Proof of Theorem onelssi
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onelss 4477 . 2 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
31, 2ax-mp 5 1 (𝐵𝐴𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wss 3197  Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458
This theorem is referenced by:  onelini  4520  oneluni  4521  omp1eomlem  7257  enumctlemm  7277  ennnfonelemdc  12965  ctinfom  12994  2o01f  16317  isomninnlem  16357  iswomninnlem  16376  ismkvnnlem  16379
  Copyright terms: Public domain W3C validator