ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon GIF version

Theorem unon 4564
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3857 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 4436 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 2619 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 121 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 2776 . . . . 5 𝑥 ∈ V
65sucid 4469 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 4554 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 3858 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 414 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 126 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2203 1 On = On
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  wrex 2486   cuni 3853  Oncon0 4415  suc csuc 4417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-tr 4148  df-iord 4418  df-on 4420  df-suc 4423
This theorem is referenced by:  limon  4566  onintonm  4570  tfri1dALT  6447  rdgon  6482
  Copyright terms: Public domain W3C validator