![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unon | GIF version |
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
Ref | Expression |
---|---|
unon | ⊢ ∪ On = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 3814 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
2 | onelon 4385 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
3 | 2 | rexlimiva 2589 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
4 | 1, 3 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
5 | vex 2741 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | sucid 4418 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
7 | onsuc 4501 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
8 | elunii 3815 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
10 | 4, 9 | impbii 126 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
11 | 10 | eqriv 2174 | 1 ⊢ ∪ On = On |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ∪ cuni 3810 Oncon0 4364 suc csuc 4366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-uni 3811 df-tr 4103 df-iord 4367 df-on 4369 df-suc 4372 |
This theorem is referenced by: limon 4513 onintonm 4517 tfri1dALT 6352 rdgon 6387 |
Copyright terms: Public domain | W3C validator |