ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon GIF version

Theorem unon 4469
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3776 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 4344 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 2569 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 120 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 2715 . . . . 5 𝑥 ∈ V
65sucid 4377 . . . 4 𝑥 ∈ suc 𝑥
7 suceloni 4459 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 3777 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 411 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 125 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2154 1 On = On
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wcel 2128  wrex 2436   cuni 3772  Oncon0 4323  suc csuc 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331
This theorem is referenced by:  limon  4471  onintonm  4475  tfri1dALT  6295  rdgon  6330
  Copyright terms: Public domain W3C validator