![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unon | GIF version |
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
Ref | Expression |
---|---|
unon | ⊢ ∪ On = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 3828 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
2 | onelon 4402 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
3 | 2 | rexlimiva 2602 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
4 | 1, 3 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
5 | vex 2755 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | sucid 4435 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
7 | onsuc 4518 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
8 | elunii 3829 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
10 | 4, 9 | impbii 126 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
11 | 10 | eqriv 2186 | 1 ⊢ ∪ On = On |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 ∃wrex 2469 ∪ cuni 3824 Oncon0 4381 suc csuc 4383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-tr 4117 df-iord 4384 df-on 4386 df-suc 4389 |
This theorem is referenced by: limon 4530 onintonm 4534 tfri1dALT 6376 rdgon 6411 |
Copyright terms: Public domain | W3C validator |