ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon GIF version

Theorem unon 4543
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3839 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 4415 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 2606 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 121 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 2763 . . . . 5 𝑥 ∈ V
65sucid 4448 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 4533 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 3840 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 414 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 126 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2190 1 On = On
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  wrex 2473   cuni 3835  Oncon0 4394  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  limon  4545  onintonm  4549  tfri1dALT  6404  rdgon  6439
  Copyright terms: Public domain W3C validator