| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unon | GIF version | ||
| Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| Ref | Expression |
|---|---|
| unon | ⊢ ∪ On = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 3857 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
| 2 | onelon 4436 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
| 3 | 2 | rexlimiva 2619 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
| 4 | 1, 3 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
| 5 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 5 | sucid 4469 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
| 7 | onsuc 4554 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 8 | elunii 3858 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
| 9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
| 10 | 4, 9 | impbii 126 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
| 11 | 10 | eqriv 2203 | 1 ⊢ ∪ On = On |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ∪ cuni 3853 Oncon0 4415 suc csuc 4417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 df-suc 4423 |
| This theorem is referenced by: limon 4566 onintonm 4570 tfri1dALT 6447 rdgon 6482 |
| Copyright terms: Public domain | W3C validator |