ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon GIF version

Theorem unon 4511
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3814 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 4385 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 2589 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 121 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 2741 . . . . 5 𝑥 ∈ V
65sucid 4418 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 4501 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 3815 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 414 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 126 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2174 1 On = On
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  wrex 2456   cuni 3810  Oncon0 4364  suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372
This theorem is referenced by:  limon  4513  onintonm  4517  tfri1dALT  6352  rdgon  6387
  Copyright terms: Public domain W3C validator