ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon GIF version

Theorem unon 4600
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3891 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 4472 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 2643 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 121 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 2802 . . . . 5 𝑥 ∈ V
65sucid 4505 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 4590 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 3892 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 414 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 126 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2226 1 On = On
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  wrex 2509   cuni 3887  Oncon0 4451  suc csuc 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456  df-suc 4459
This theorem is referenced by:  limon  4602  onintonm  4606  tfri1dALT  6487  rdgon  6522
  Copyright terms: Public domain W3C validator