| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unon | GIF version | ||
| Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| Ref | Expression |
|---|---|
| unon | ⊢ ∪ On = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 3891 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
| 2 | onelon 4472 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
| 3 | 2 | rexlimiva 2643 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
| 4 | 1, 3 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
| 5 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 5 | sucid 4505 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
| 7 | onsuc 4590 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 8 | elunii 3892 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
| 9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
| 10 | 4, 9 | impbii 126 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
| 11 | 10 | eqriv 2226 | 1 ⊢ ∪ On = On |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ∪ cuni 3887 Oncon0 4451 suc csuc 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 df-suc 4459 |
| This theorem is referenced by: limon 4602 onintonm 4606 tfri1dALT 6487 rdgon 6522 |
| Copyright terms: Public domain | W3C validator |