| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1 | GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prid1g 3770 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prid2 3773 prnz 3789 preqr1 3845 preq12b 3847 prel12 3848 opi1 4317 opeluu 4540 onsucelsucexmidlem1 4619 regexmidlem1 4624 reg2exmidlema 4625 opthreg 4647 ordtri2or2exmid 4662 ontri2orexmidim 4663 dmrnssfld 4986 funopg 5351 acexmidlemb 5992 0lt2o 6585 2dom 6956 unfiexmid 7076 djuss 7233 exmidomni 7305 pr2cv1 7364 exmidonfinlem 7367 exmidaclem 7386 reelprrecn 8130 pnfxr 8195 sup3exmid 9100 fun2dmnop0 11064 fnpr2ob 13368 lgsdir2lem3 15703 upgrex 15897 bdop 16196 2o01f 16317 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |