![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid1 | GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prid1g 3708 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 Vcvv 2749 {cpr 3605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 |
This theorem is referenced by: prid2 3711 prnz 3726 preqr1 3780 preq12b 3782 prel12 3783 opi1 4244 opeluu 4462 onsucelsucexmidlem1 4539 regexmidlem1 4544 reg2exmidlema 4545 opthreg 4567 ordtri2or2exmid 4582 ontri2orexmidim 4583 dmrnssfld 4902 funopg 5262 acexmidlemb 5880 0lt2o 6456 2dom 6819 unfiexmid 6931 djuss 7083 exmidomni 7154 exmidonfinlem 7206 exmidaclem 7221 reelprrecn 7960 pnfxr 8024 sup3exmid 8928 fnpr2ob 12778 lgsdir2lem3 14784 bdop 14980 2o01f 15100 iswomni0 15153 |
Copyright terms: Public domain | W3C validator |