ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1 GIF version

Theorem prid1 3772
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid1.1 𝐴 ∈ V
Assertion
Ref Expression
prid1 𝐴 ∈ {𝐴, 𝐵}

Proof of Theorem prid1
StepHypRef Expression
1 prid1.1 . 2 𝐴 ∈ V
2 prid1g 3770 . 2 (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵})
31, 2ax-mp 5 1 𝐴 ∈ {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  prid2  3773  prnz  3789  preqr1  3845  preq12b  3847  prel12  3848  opi1  4317  opeluu  4540  onsucelsucexmidlem1  4619  regexmidlem1  4624  reg2exmidlema  4625  opthreg  4647  ordtri2or2exmid  4662  ontri2orexmidim  4663  dmrnssfld  4986  funopg  5351  acexmidlemb  5992  0lt2o  6585  2dom  6956  unfiexmid  7076  djuss  7233  exmidomni  7305  pr2cv1  7364  exmidonfinlem  7367  exmidaclem  7386  reelprrecn  8130  pnfxr  8195  sup3exmid  9100  fun2dmnop0  11064  fnpr2ob  13368  lgsdir2lem3  15703  upgrex  15897  bdop  16196  2o01f  16317  iswomni0  16378
  Copyright terms: Public domain W3C validator