| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1 | GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prid1g 3742 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: prid2 3745 prnz 3761 preqr1 3815 preq12b 3817 prel12 3818 opi1 4284 opeluu 4505 onsucelsucexmidlem1 4584 regexmidlem1 4589 reg2exmidlema 4590 opthreg 4612 ordtri2or2exmid 4627 ontri2orexmidim 4628 dmrnssfld 4950 funopg 5314 acexmidlemb 5949 0lt2o 6540 2dom 6911 unfiexmid 7030 djuss 7187 exmidomni 7259 exmidonfinlem 7317 exmidaclem 7336 reelprrecn 8080 pnfxr 8145 sup3exmid 9050 fun2dmnop0 11014 fnpr2ob 13247 lgsdir2lem3 15582 upgrex 15774 bdop 15949 2o01f 16070 iswomni0 16131 |
| Copyright terms: Public domain | W3C validator |