| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1 | GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | prid1g 3727 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: prid2 3730 prnz 3745 preqr1 3799 preq12b 3801 prel12 3802 opi1 4266 opeluu 4486 onsucelsucexmidlem1 4565 regexmidlem1 4570 reg2exmidlema 4571 opthreg 4593 ordtri2or2exmid 4608 ontri2orexmidim 4609 dmrnssfld 4930 funopg 5293 acexmidlemb 5915 0lt2o 6500 2dom 6865 unfiexmid 6980 djuss 7137 exmidomni 7209 exmidonfinlem 7262 exmidaclem 7277 reelprrecn 8016 pnfxr 8081 sup3exmid 8986 fnpr2ob 12993 lgsdir2lem3 15281 bdop 15531 2o01f 15651 iswomni0 15705 |
| Copyright terms: Public domain | W3C validator |