ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemaccex GIF version

Theorem tfr1onlemaccex 6211
Description: We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 16-Mar-2022.)

Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemaccex.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
Assertion
Ref Expression
tfr1onlemaccex ((𝜑𝐶𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑥   𝐶,𝑔,𝑢   𝑔,𝐺,𝑢,𝑥   𝑓,𝐺,𝑦,𝑥   𝑥,𝑋,𝑓   𝜑,𝑥   𝑦,𝑔   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑔)   𝐴(𝑦,𝑓,𝑔)   𝐶(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑋(𝑦,𝑢,𝑔)

Proof of Theorem tfr1onlemaccex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑟 𝑠 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfr1on.x . . 3 (𝜑 → Ord 𝑋)
2 ordelon 4273 . . 3 ((Ord 𝑋𝐶𝑋) → 𝐶 ∈ On)
31, 2sylan 279 . 2 ((𝜑𝐶𝑋) → 𝐶 ∈ On)
4 eleq1 2178 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑋𝑤𝑋))
54anbi2d 457 . . . 4 (𝑧 = 𝑤 → ((𝜑𝑧𝑋) ↔ (𝜑𝑤𝑋)))
6 fneq2 5180 . . . . . 6 (𝑧 = 𝑤 → (𝑔 Fn 𝑧𝑔 Fn 𝑤))
7 raleq 2601 . . . . . 6 (𝑧 = 𝑤 → (∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
86, 7anbi12d 462 . . . . 5 (𝑧 = 𝑤 → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
98exbidv 1779 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
105, 9imbi12d 233 . . 3 (𝑧 = 𝑤 → (((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ((𝜑𝑤𝑋) → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
11 eleq1 2178 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑋𝐶𝑋))
1211anbi2d 457 . . . 4 (𝑧 = 𝐶 → ((𝜑𝑧𝑋) ↔ (𝜑𝐶𝑋)))
13 fneq2 5180 . . . . . 6 (𝑧 = 𝐶 → (𝑔 Fn 𝑧𝑔 Fn 𝐶))
14 raleq 2601 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1513, 14anbi12d 462 . . . . 5 (𝑧 = 𝐶 → ((𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1615exbidv 1779 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1712, 16imbi12d 233 . . 3 (𝑧 = 𝐶 → (((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ((𝜑𝐶𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
18 tfr1on.f . . . . . . . . 9 𝐹 = recs(𝐺)
19 tfr1on.g . . . . . . . . . 10 (𝜑 → Fun 𝐺)
2019ad3antrrr 481 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → Fun 𝐺)
211ad3antrrr 481 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → Ord 𝑋)
22 tfr1on.ex . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
23223expia 1166 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
2423alrimiv 1828 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
25 fneq1 5179 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑓 Fn 𝑥 Fn 𝑥))
26 fveq2 5387 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (𝐺𝑓) = (𝐺))
2726eleq1d 2184 . . . . . . . . . . . . . . . . 17 (𝑓 = → ((𝐺𝑓) ∈ V ↔ (𝐺) ∈ V))
2825, 27imbi12d 233 . . . . . . . . . . . . . . . 16 (𝑓 = → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ( Fn 𝑥 → (𝐺) ∈ V)))
2928cbvalv 1869 . . . . . . . . . . . . . . 15 (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀( Fn 𝑥 → (𝐺) ∈ V))
3024, 29sylib 121 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ∀( Fn 𝑥 → (𝐺) ∈ V))
313019.21bi 1520 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ( Fn 𝑥 → (𝐺) ∈ V))
32313impia 1161 . . . . . . . . . . . 12 ((𝜑𝑥𝑋 Fn 𝑥) → (𝐺) ∈ V)
33323adant1r 1192 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ 𝑥𝑋 Fn 𝑥) → (𝐺) ∈ V)
34333adant1r 1192 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑥𝑋 Fn 𝑥) → (𝐺) ∈ V)
35343adant1r 1192 . . . . . . . . 9 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑥𝑋 Fn 𝑥) → (𝐺) ∈ V)
36 tfr1onlemsucfn.1 . . . . . . . . . 10 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
37 fveq1 5386 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓𝑦) = (𝑦))
38 reseq1 4781 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝑓𝑦) = (𝑦))
3938fveq2d 5391 . . . . . . . . . . . . . . 15 (𝑓 = → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑦)))
4037, 39eqeq12d 2130 . . . . . . . . . . . . . 14 (𝑓 = → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑦) = (𝐺‘(𝑦))))
4140ralbidv 2412 . . . . . . . . . . . . 13 (𝑓 = → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦))))
4225, 41anbi12d 462 . . . . . . . . . . . 12 (𝑓 = → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ( Fn 𝑥 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))))
4342rexbidv 2413 . . . . . . . . . . 11 (𝑓 = → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 ( Fn 𝑥 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))))
4443cbvabv 2239 . . . . . . . . . 10 {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = { ∣ ∃𝑥𝑋 ( Fn 𝑥 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))}
4536, 44eqtri 2136 . . . . . . . . 9 𝐴 = { ∣ ∃𝑥𝑋 ( Fn 𝑥 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))}
46 fneq1 5179 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑟 Fn 𝑡𝑎 Fn 𝑡))
47 eleq1 2178 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑟𝐴𝑎𝐴))
48 id 19 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑎𝑟 = 𝑎)
49 fveq2 5387 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑎 → (𝐺𝑟) = (𝐺𝑎))
5049opeq2d 3680 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑎 → ⟨𝑡, (𝐺𝑟)⟩ = ⟨𝑡, (𝐺𝑎)⟩)
5150sneqd 3508 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑎 → {⟨𝑡, (𝐺𝑟)⟩} = {⟨𝑡, (𝐺𝑎)⟩})
5248, 51uneq12d 3199 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑎 → (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}) = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}))
5352eqeq2d 2127 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}) ↔ 𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
5446, 47, 533anbi123d 1273 . . . . . . . . . . . . . 14 (𝑟 = 𝑎 → ((𝑟 Fn 𝑡𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ (𝑎 Fn 𝑡𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}))))
5554cbvexv 1870 . . . . . . . . . . . . 13 (∃𝑟(𝑟 Fn 𝑡𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑎(𝑎 Fn 𝑡𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
5655rexbii 2417 . . . . . . . . . . . 12 (∃𝑡𝑧𝑟(𝑟 Fn 𝑡𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑡𝑧𝑎(𝑎 Fn 𝑡𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
57 fneq2 5180 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (𝑎 Fn 𝑡𝑎 Fn 𝑏))
58 opeq1 3673 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → ⟨𝑡, (𝐺𝑎)⟩ = ⟨𝑏, (𝐺𝑎)⟩)
5958sneqd 3508 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → {⟨𝑡, (𝐺𝑎)⟩} = {⟨𝑏, (𝐺𝑎)⟩})
6059uneq2d 3198 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑏 → (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}) = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))
6160eqeq2d 2127 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}) ↔ 𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6257, 613anbi13d 1275 . . . . . . . . . . . . . 14 (𝑡 = 𝑏 → ((𝑎 Fn 𝑡𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ (𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6362exbidv 1779 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (∃𝑎(𝑎 Fn 𝑡𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ ∃𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6463cbvrexv 2630 . . . . . . . . . . . 12 (∃𝑡𝑧𝑎(𝑎 Fn 𝑡𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6556, 64bitri 183 . . . . . . . . . . 11 (∃𝑡𝑧𝑟(𝑟 Fn 𝑡𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6665abbii 2231 . . . . . . . . . 10 {𝑠 ∣ ∃𝑡𝑧𝑟(𝑟 Fn 𝑡𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}))} = {𝑠 ∣ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
67 eqeq1 2122 . . . . . . . . . . . . . 14 (𝑠 = 𝑑 → (𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}) ↔ 𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
68673anbi3d 1279 . . . . . . . . . . . . 13 (𝑠 = 𝑑 → ((𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ (𝑎 Fn 𝑏𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6968exbidv 1779 . . . . . . . . . . . 12 (𝑠 = 𝑑 → (∃𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ ∃𝑎(𝑎 Fn 𝑏𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
7069rexbidv 2413 . . . . . . . . . . 11 (𝑠 = 𝑑 → (∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
7170cbvabv 2239 . . . . . . . . . 10 {𝑠 ∣ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))} = {𝑑 ∣ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
7266, 71eqtri 2136 . . . . . . . . 9 {𝑠 ∣ ∃𝑡𝑧𝑟(𝑟 Fn 𝑡𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}))} = {𝑑 ∣ ∃𝑏𝑧𝑎(𝑎 Fn 𝑏𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
73 tfr1onlemaccex.u . . . . . . . . . . . 12 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
7473adantlr 466 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
7574adantlr 466 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
7675adantlr 466 . . . . . . . . 9 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
77 simpr 109 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → 𝑧𝑋)
78 simpr 109 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑏𝑧)
79 simplr 502 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑧𝑋)
80 ordtr1 4278 . . . . . . . . . . . . . 14 (Ord 𝑋 → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
811, 80syl 14 . . . . . . . . . . . . 13 (𝜑 → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
8281ad4antr 483 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
8378, 79, 82mp2and 427 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑏𝑋)
84 eleq1 2178 . . . . . . . . . . . . . 14 (𝑤 = 𝑏 → (𝑤𝑋𝑏𝑋))
85 fneq2 5180 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (𝑔 Fn 𝑤𝑔 Fn 𝑏))
86 raleq 2601 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
8785, 86anbi12d 462 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
8887exbidv 1779 . . . . . . . . . . . . . 14 (𝑤 = 𝑏 → (∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
8984, 88imbi12d 233 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → ((𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝑏𝑋 → ∃𝑔(𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
90 simpllr 506 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
9189, 90, 78rspcdva 2766 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → (𝑏𝑋 → ∃𝑔(𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
92 fneq1 5179 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → (𝑔 Fn 𝑏𝑎 Fn 𝑏))
93 fveq1 5386 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → (𝑔𝑢) = (𝑎𝑢))
94 reseq1 4781 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑎 → (𝑔𝑢) = (𝑎𝑢))
9594fveq2d 5391 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → (𝐺‘(𝑔𝑢)) = (𝐺‘(𝑎𝑢)))
9693, 95eqeq12d 2130 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → ((𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
9796ralbidv 2412 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → (∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
9892, 97anbi12d 462 . . . . . . . . . . . . . 14 (𝑔 = 𝑎 → ((𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢)))))
9998cbvexv 1870 . . . . . . . . . . . . 13 (∃𝑔(𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑎(𝑎 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
100 fveq2 5387 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑐 → (𝑎𝑢) = (𝑎𝑐))
101 reseq2 4782 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑐 → (𝑎𝑢) = (𝑎𝑐))
102101fveq2d 5391 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑐 → (𝐺‘(𝑎𝑢)) = (𝐺‘(𝑎𝑐)))
103100, 102eqeq12d 2130 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑐 → ((𝑎𝑢) = (𝐺‘(𝑎𝑢)) ↔ (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
104103cbvralv 2629 . . . . . . . . . . . . . . 15 (∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢)) ↔ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))
105104anbi2i 450 . . . . . . . . . . . . . 14 ((𝑎 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))) ↔ (𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
106105exbii 1567 . . . . . . . . . . . . 13 (∃𝑎(𝑎 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))) ↔ ∃𝑎(𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
10799, 106bitri 183 . . . . . . . . . . . 12 (∃𝑔(𝑔 Fn 𝑏 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑎(𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
10891, 107syl6ib 160 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → (𝑏𝑋 → ∃𝑎(𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
10983, 108mpd 13 . . . . . . . . . 10 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ∃𝑎(𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
110109ralrimiva 2480 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∀𝑏𝑧𝑎(𝑎 Fn 𝑏 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
11118, 20, 21, 35, 45, 72, 76, 77, 110tfr1onlemex 6210 . . . . . . . 8 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∃( Fn 𝑧 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))))
112 fneq1 5179 . . . . . . . . . 10 ( = 𝑔 → ( Fn 𝑧𝑔 Fn 𝑧))
113 fveq1 5386 . . . . . . . . . . . 12 ( = 𝑔 → (𝑢) = (𝑔𝑢))
114 reseq1 4781 . . . . . . . . . . . . 13 ( = 𝑔 → (𝑢) = (𝑔𝑢))
115114fveq2d 5391 . . . . . . . . . . . 12 ( = 𝑔 → (𝐺‘(𝑢)) = (𝐺‘(𝑔𝑢)))
116113, 115eqeq12d 2130 . . . . . . . . . . 11 ( = 𝑔 → ((𝑢) = (𝐺‘(𝑢)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
117116ralbidv 2412 . . . . . . . . . 10 ( = 𝑔 → (∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
118112, 117anbi12d 462 . . . . . . . . 9 ( = 𝑔 → (( Fn 𝑧 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
119118cbvexv 1870 . . . . . . . 8 (∃( Fn 𝑧 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))) ↔ ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
120111, 119sylib 121 . . . . . . 7 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
121120exp31 359 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑧𝑋 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
122121expcom 115 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑧𝑋 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))))
123122a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (𝜑 → (𝑧𝑋 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))))
124 impexp 261 . . . . . 6 (((𝜑𝑤𝑋) → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
125124ralbii 2416 . . . . 5 (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ∀𝑤𝑧 (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
126 r19.21v 2484 . . . . 5 (∀𝑤𝑧 (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ↔ (𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
127125, 126bitri 183 . . . 4 (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
128 impexp 261 . . . 4 (((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → (𝑧𝑋 → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
129123, 127, 1283imtr4g 204 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
13010, 17, 129tfis3 4468 . 2 (𝐶 ∈ On → ((𝜑𝐶𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1313, 130mpcom 36 1 ((𝜑𝐶𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945  wal 1312   = wceq 1314  wex 1451  wcel 1463  {cab 2101  wral 2391  wrex 2392  Vcvv 2658  cun 3037  {csn 3495  cop 3498   cuni 3704  Ord word 4252  Oncon0 4253  suc csuc 4255  cres 4509  Fun wfun 5085   Fn wfn 5086  cfv 5091  recscrecs 6167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-recs 6168
This theorem is referenced by:  tfr1onlemres  6212
  Copyright terms: Public domain W3C validator