ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemaccex GIF version

Theorem tfrcllemaccex 6460
Description: We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 26-Mar-2022.)

Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemaccex.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
Assertion
Ref Expression
tfrcllemaccex ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝐶,𝑔,𝑢   𝑔,𝐺,𝑢,𝑦,𝑥   𝑓,𝐺,𝑥,𝑦   𝑆,𝑔,𝑢,𝑦,𝑥   𝑆,𝑓   𝑦,𝑋,𝑥,𝑓   𝜑,𝑦,𝑥,𝑓
Allowed substitution hints:   𝜑(𝑢,𝑔)   𝐴(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑋(𝑢,𝑔)

Proof of Theorem tfrcllemaccex
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑠 𝑡 𝑑 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . 3 (𝜑 → Ord 𝑋)
2 ordelon 4438 . . 3 ((Ord 𝑋𝐶𝑋) → 𝐶 ∈ On)
31, 2sylan 283 . 2 ((𝜑𝐶𝑋) → 𝐶 ∈ On)
4 eleq1 2269 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑋𝑤𝑋))
54anbi2d 464 . . . 4 (𝑧 = 𝑤 → ((𝜑𝑧𝑋) ↔ (𝜑𝑤𝑋)))
6 feq2 5419 . . . . . 6 (𝑧 = 𝑤 → (𝑔:𝑧𝑆𝑔:𝑤𝑆))
7 raleq 2703 . . . . . 6 (𝑧 = 𝑤 → (∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
86, 7anbi12d 473 . . . . 5 (𝑧 = 𝑤 → ((𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
98exbidv 1849 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
105, 9imbi12d 234 . . 3 (𝑧 = 𝑤 → (((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
11 eleq1 2269 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑋𝐶𝑋))
1211anbi2d 464 . . . 4 (𝑧 = 𝐶 → ((𝜑𝑧𝑋) ↔ (𝜑𝐶𝑋)))
13 feq2 5419 . . . . . 6 (𝑧 = 𝐶 → (𝑔:𝑧𝑆𝑔:𝐶𝑆))
14 raleq 2703 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1513, 14anbi12d 473 . . . . 5 (𝑧 = 𝐶 → ((𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1615exbidv 1849 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1712, 16imbi12d 234 . . 3 (𝑧 = 𝐶 → (((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
18 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
19 tfrcl.g . . . . . . . . . 10 (𝜑 → Fun 𝐺)
2019ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → Fun 𝐺)
211ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → Ord 𝑋)
22 tfrcl.ex . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
23223expia 1208 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2423alrimiv 1898 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
25 feq1 5418 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑓:𝑥𝑆:𝑥𝑆))
26 fveq2 5589 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (𝐺𝑓) = (𝐺))
2726eleq1d 2275 . . . . . . . . . . . . . . . . 17 (𝑓 = → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺) ∈ 𝑆))
2825, 27imbi12d 234 . . . . . . . . . . . . . . . 16 (𝑓 = → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (:𝑥𝑆 → (𝐺) ∈ 𝑆)))
2928cbvalv 1942 . . . . . . . . . . . . . . 15 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀(:𝑥𝑆 → (𝐺) ∈ 𝑆))
3024, 29sylib 122 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ∀(:𝑥𝑆 → (𝐺) ∈ 𝑆))
313019.21bi 1582 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (:𝑥𝑆 → (𝐺) ∈ 𝑆))
32313impia 1203 . . . . . . . . . . . 12 ((𝜑𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
33323adant1r 1234 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ 𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
34333adant1r 1234 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
35343adant1r 1234 . . . . . . . . 9 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
36 tfrcllemsucfn.1 . . . . . . . . . 10 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
37 fveq1 5588 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓𝑦) = (𝑦))
38 reseq1 4962 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝑓𝑦) = (𝑦))
3938fveq2d 5593 . . . . . . . . . . . . . . 15 (𝑓 = → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑦)))
4037, 39eqeq12d 2221 . . . . . . . . . . . . . 14 (𝑓 = → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑦) = (𝐺‘(𝑦))))
4140ralbidv 2507 . . . . . . . . . . . . 13 (𝑓 = → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦))))
4225, 41anbi12d 473 . . . . . . . . . . . 12 (𝑓 = → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))))
4342rexbidv 2508 . . . . . . . . . . 11 (𝑓 = → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))))
4443cbvabv 2331 . . . . . . . . . 10 {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = { ∣ ∃𝑥𝑋 (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))}
4536, 44eqtri 2227 . . . . . . . . 9 𝐴 = { ∣ ∃𝑥𝑋 (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))}
46 feq1 5418 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑟:𝑡𝑆𝑎:𝑡𝑆))
47 eleq1 2269 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑟𝐴𝑎𝐴))
48 id 19 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑎𝑟 = 𝑎)
49 fveq2 5589 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑎 → (𝐺𝑟) = (𝐺𝑎))
5049opeq2d 3832 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑎 → ⟨𝑡, (𝐺𝑟)⟩ = ⟨𝑡, (𝐺𝑎)⟩)
5150sneqd 3651 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑎 → {⟨𝑡, (𝐺𝑟)⟩} = {⟨𝑡, (𝐺𝑎)⟩})
5248, 51uneq12d 3332 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑎 → (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}) = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}))
5352eqeq2d 2218 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}) ↔ 𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
5446, 47, 533anbi123d 1325 . . . . . . . . . . . . . 14 (𝑟 = 𝑎 → ((𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ (𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}))))
5554cbvexv 1943 . . . . . . . . . . . . 13 (∃𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
5655rexbii 2514 . . . . . . . . . . . 12 (∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑡𝑧𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
57 feq2 5419 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (𝑎:𝑡𝑆𝑎:𝑏𝑆))
58 opeq1 3825 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → ⟨𝑡, (𝐺𝑎)⟩ = ⟨𝑏, (𝐺𝑎)⟩)
5958sneqd 3651 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → {⟨𝑡, (𝐺𝑎)⟩} = {⟨𝑏, (𝐺𝑎)⟩})
6059uneq2d 3331 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑏 → (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}) = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))
6160eqeq2d 2218 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}) ↔ 𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6257, 613anbi13d 1327 . . . . . . . . . . . . . 14 (𝑡 = 𝑏 → ((𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ (𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6362exbidv 1849 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (∃𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ ∃𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6463cbvrexv 2740 . . . . . . . . . . . 12 (∃𝑡𝑧𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6556, 64bitri 184 . . . . . . . . . . 11 (∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6665abbii 2322 . . . . . . . . . 10 {𝑠 ∣ ∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}))} = {𝑠 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
67 eqeq1 2213 . . . . . . . . . . . . . 14 (𝑠 = 𝑑 → (𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}) ↔ 𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
68673anbi3d 1331 . . . . . . . . . . . . 13 (𝑠 = 𝑑 → ((𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ (𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6968exbidv 1849 . . . . . . . . . . . 12 (𝑠 = 𝑑 → (∃𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ ∃𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
7069rexbidv 2508 . . . . . . . . . . 11 (𝑠 = 𝑑 → (∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
7170cbvabv 2331 . . . . . . . . . 10 {𝑠 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))} = {𝑑 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
7266, 71eqtri 2227 . . . . . . . . 9 {𝑠 ∣ ∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}))} = {𝑑 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
73 tfrcllemaccex.u . . . . . . . . . . . 12 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
7473adantlr 477 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
7574adantlr 477 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
7675adantlr 477 . . . . . . . . 9 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
77 simpr 110 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → 𝑧𝑋)
78 simpr 110 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑏𝑧)
79 simplr 528 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑧𝑋)
80 ordtr1 4443 . . . . . . . . . . . . . 14 (Ord 𝑋 → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
811, 80syl 14 . . . . . . . . . . . . 13 (𝜑 → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
8281ad4antr 494 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
8378, 79, 82mp2and 433 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑏𝑋)
84 eleq1 2269 . . . . . . . . . . . . . 14 (𝑤 = 𝑏 → (𝑤𝑋𝑏𝑋))
85 feq2 5419 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (𝑔:𝑤𝑆𝑔:𝑏𝑆))
86 raleq 2703 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
8785, 86anbi12d 473 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → ((𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
8887exbidv 1849 . . . . . . . . . . . . . 14 (𝑤 = 𝑏 → (∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
8984, 88imbi12d 234 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → ((𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝑏𝑋 → ∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
90 simpllr 534 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
9189, 90, 78rspcdva 2886 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → (𝑏𝑋 → ∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
92 feq1 5418 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → (𝑔:𝑏𝑆𝑎:𝑏𝑆))
93 fveq1 5588 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → (𝑔𝑢) = (𝑎𝑢))
94 reseq1 4962 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑎 → (𝑔𝑢) = (𝑎𝑢))
9594fveq2d 5593 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → (𝐺‘(𝑔𝑢)) = (𝐺‘(𝑎𝑢)))
9693, 95eqeq12d 2221 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → ((𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
9796ralbidv 2507 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → (∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
9892, 97anbi12d 473 . . . . . . . . . . . . . 14 (𝑔 = 𝑎 → ((𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢)))))
9998cbvexv 1943 . . . . . . . . . . . . 13 (∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
100 fveq2 5589 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑐 → (𝑎𝑢) = (𝑎𝑐))
101 reseq2 4963 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑐 → (𝑎𝑢) = (𝑎𝑐))
102101fveq2d 5593 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑐 → (𝐺‘(𝑎𝑢)) = (𝐺‘(𝑎𝑐)))
103100, 102eqeq12d 2221 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑐 → ((𝑎𝑢) = (𝐺‘(𝑎𝑢)) ↔ (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
104103cbvralv 2739 . . . . . . . . . . . . . . 15 (∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢)) ↔ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))
105104anbi2i 457 . . . . . . . . . . . . . 14 ((𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))) ↔ (𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
106105exbii 1629 . . . . . . . . . . . . 13 (∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))) ↔ ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
10799, 106bitri 184 . . . . . . . . . . . 12 (∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
10891, 107imbitrdi 161 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → (𝑏𝑋 → ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
10983, 108mpd 13 . . . . . . . . . 10 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
110109ralrimiva 2580 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∀𝑏𝑧𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
11118, 20, 21, 35, 45, 72, 76, 77, 110tfrcllemex 6459 . . . . . . . 8 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∃(:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))))
112 feq1 5418 . . . . . . . . . 10 ( = 𝑔 → (:𝑧𝑆𝑔:𝑧𝑆))
113 fveq1 5588 . . . . . . . . . . . 12 ( = 𝑔 → (𝑢) = (𝑔𝑢))
114 reseq1 4962 . . . . . . . . . . . . 13 ( = 𝑔 → (𝑢) = (𝑔𝑢))
115114fveq2d 5593 . . . . . . . . . . . 12 ( = 𝑔 → (𝐺‘(𝑢)) = (𝐺‘(𝑔𝑢)))
116113, 115eqeq12d 2221 . . . . . . . . . . 11 ( = 𝑔 → ((𝑢) = (𝐺‘(𝑢)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
117116ralbidv 2507 . . . . . . . . . 10 ( = 𝑔 → (∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
118112, 117anbi12d 473 . . . . . . . . 9 ( = 𝑔 → ((:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
119118cbvexv 1943 . . . . . . . 8 (∃(:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))) ↔ ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
120111, 119sylib 122 . . . . . . 7 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
121120exp31 364 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
122121expcom 116 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))))
123122a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (𝜑 → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))))
124 impexp 263 . . . . . 6 (((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
125124ralbii 2513 . . . . 5 (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ∀𝑤𝑧 (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
126 r19.21v 2584 . . . . 5 (∀𝑤𝑧 (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ↔ (𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
127125, 126bitri 184 . . . 4 (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
128 impexp 263 . . . 4 (((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
129123, 127, 1283imtr4g 205 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
13010, 17, 129tfis3 4642 . 2 (𝐶 ∈ On → ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1313, 130mpcom 36 1 ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wal 1371   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wral 2485  wrex 2486  cun 3168  {csn 3638  cop 3641   cuni 3856  Ord word 4417  Oncon0 4418  suc csuc 4420  cres 4685  Fun wfun 5274  wf 5276  cfv 5280  recscrecs 6403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-recs 6404
This theorem is referenced by:  tfrcllemres  6461
  Copyright terms: Public domain W3C validator