ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemaccex GIF version

Theorem tfrcllemaccex 6329
Description: We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 26-Mar-2022.)

Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemaccex.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
Assertion
Ref Expression
tfrcllemaccex ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝐶,𝑔,𝑢   𝑔,𝐺,𝑢,𝑦,𝑥   𝑓,𝐺,𝑥,𝑦   𝑆,𝑔,𝑢,𝑦,𝑥   𝑆,𝑓   𝑦,𝑋,𝑥,𝑓   𝜑,𝑦,𝑥,𝑓
Allowed substitution hints:   𝜑(𝑢,𝑔)   𝐴(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑋(𝑢,𝑔)

Proof of Theorem tfrcllemaccex
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑠 𝑡 𝑑 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . 3 (𝜑 → Ord 𝑋)
2 ordelon 4361 . . 3 ((Ord 𝑋𝐶𝑋) → 𝐶 ∈ On)
31, 2sylan 281 . 2 ((𝜑𝐶𝑋) → 𝐶 ∈ On)
4 eleq1 2229 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑋𝑤𝑋))
54anbi2d 460 . . . 4 (𝑧 = 𝑤 → ((𝜑𝑧𝑋) ↔ (𝜑𝑤𝑋)))
6 feq2 5321 . . . . . 6 (𝑧 = 𝑤 → (𝑔:𝑧𝑆𝑔:𝑤𝑆))
7 raleq 2661 . . . . . 6 (𝑧 = 𝑤 → (∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
86, 7anbi12d 465 . . . . 5 (𝑧 = 𝑤 → ((𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
98exbidv 1813 . . . 4 (𝑧 = 𝑤 → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
105, 9imbi12d 233 . . 3 (𝑧 = 𝑤 → (((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
11 eleq1 2229 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑋𝐶𝑋))
1211anbi2d 460 . . . 4 (𝑧 = 𝐶 → ((𝜑𝑧𝑋) ↔ (𝜑𝐶𝑋)))
13 feq2 5321 . . . . . 6 (𝑧 = 𝐶 → (𝑔:𝑧𝑆𝑔:𝐶𝑆))
14 raleq 2661 . . . . . 6 (𝑧 = 𝐶 → (∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1513, 14anbi12d 465 . . . . 5 (𝑧 = 𝐶 → ((𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1615exbidv 1813 . . . 4 (𝑧 = 𝐶 → (∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1712, 16imbi12d 233 . . 3 (𝑧 = 𝐶 → (((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
18 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
19 tfrcl.g . . . . . . . . . 10 (𝜑 → Fun 𝐺)
2019ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → Fun 𝐺)
211ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → Ord 𝑋)
22 tfrcl.ex . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
23223expia 1195 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
2423alrimiv 1862 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
25 feq1 5320 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑓:𝑥𝑆:𝑥𝑆))
26 fveq2 5486 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (𝐺𝑓) = (𝐺))
2726eleq1d 2235 . . . . . . . . . . . . . . . . 17 (𝑓 = → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺) ∈ 𝑆))
2825, 27imbi12d 233 . . . . . . . . . . . . . . . 16 (𝑓 = → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (:𝑥𝑆 → (𝐺) ∈ 𝑆)))
2928cbvalv 1905 . . . . . . . . . . . . . . 15 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀(:𝑥𝑆 → (𝐺) ∈ 𝑆))
3024, 29sylib 121 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ∀(:𝑥𝑆 → (𝐺) ∈ 𝑆))
313019.21bi 1546 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (:𝑥𝑆 → (𝐺) ∈ 𝑆))
32313impia 1190 . . . . . . . . . . . 12 ((𝜑𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
33323adant1r 1221 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ 𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
34333adant1r 1221 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
35343adant1r 1221 . . . . . . . . 9 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑥𝑋:𝑥𝑆) → (𝐺) ∈ 𝑆)
36 tfrcllemsucfn.1 . . . . . . . . . 10 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
37 fveq1 5485 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓𝑦) = (𝑦))
38 reseq1 4878 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝑓𝑦) = (𝑦))
3938fveq2d 5490 . . . . . . . . . . . . . . 15 (𝑓 = → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑦)))
4037, 39eqeq12d 2180 . . . . . . . . . . . . . 14 (𝑓 = → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑦) = (𝐺‘(𝑦))))
4140ralbidv 2466 . . . . . . . . . . . . 13 (𝑓 = → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦))))
4225, 41anbi12d 465 . . . . . . . . . . . 12 (𝑓 = → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))))
4342rexbidv 2467 . . . . . . . . . . 11 (𝑓 = → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))))
4443cbvabv 2291 . . . . . . . . . 10 {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = { ∣ ∃𝑥𝑋 (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))}
4536, 44eqtri 2186 . . . . . . . . 9 𝐴 = { ∣ ∃𝑥𝑋 (:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑦) = (𝐺‘(𝑦)))}
46 feq1 5320 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑟:𝑡𝑆𝑎:𝑡𝑆))
47 eleq1 2229 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑟𝐴𝑎𝐴))
48 id 19 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑎𝑟 = 𝑎)
49 fveq2 5486 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑎 → (𝐺𝑟) = (𝐺𝑎))
5049opeq2d 3765 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑎 → ⟨𝑡, (𝐺𝑟)⟩ = ⟨𝑡, (𝐺𝑎)⟩)
5150sneqd 3589 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑎 → {⟨𝑡, (𝐺𝑟)⟩} = {⟨𝑡, (𝐺𝑎)⟩})
5248, 51uneq12d 3277 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑎 → (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}) = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}))
5352eqeq2d 2177 . . . . . . . . . . . . . . 15 (𝑟 = 𝑎 → (𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}) ↔ 𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
5446, 47, 533anbi123d 1302 . . . . . . . . . . . . . 14 (𝑟 = 𝑎 → ((𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ (𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}))))
5554cbvexv 1906 . . . . . . . . . . . . 13 (∃𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
5655rexbii 2473 . . . . . . . . . . . 12 (∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑡𝑧𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})))
57 feq2 5321 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (𝑎:𝑡𝑆𝑎:𝑏𝑆))
58 opeq1 3758 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → ⟨𝑡, (𝐺𝑎)⟩ = ⟨𝑏, (𝐺𝑎)⟩)
5958sneqd 3589 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → {⟨𝑡, (𝐺𝑎)⟩} = {⟨𝑏, (𝐺𝑎)⟩})
6059uneq2d 3276 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑏 → (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}) = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))
6160eqeq2d 2177 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩}) ↔ 𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6257, 613anbi13d 1304 . . . . . . . . . . . . . 14 (𝑡 = 𝑏 → ((𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ (𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6362exbidv 1813 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (∃𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ ∃𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6463cbvrexv 2693 . . . . . . . . . . . 12 (∃𝑡𝑧𝑎(𝑎:𝑡𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑡, (𝐺𝑎)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6556, 64bitri 183 . . . . . . . . . . 11 (∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
6665abbii 2282 . . . . . . . . . 10 {𝑠 ∣ ∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}))} = {𝑠 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
67 eqeq1 2172 . . . . . . . . . . . . . 14 (𝑠 = 𝑑 → (𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}) ↔ 𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})))
68673anbi3d 1308 . . . . . . . . . . . . 13 (𝑠 = 𝑑 → ((𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ (𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
6968exbidv 1813 . . . . . . . . . . . 12 (𝑠 = 𝑑 → (∃𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ ∃𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
7069rexbidv 2467 . . . . . . . . . . 11 (𝑠 = 𝑑 → (∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩})) ↔ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))))
7170cbvabv 2291 . . . . . . . . . 10 {𝑠 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑠 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))} = {𝑑 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
7266, 71eqtri 2186 . . . . . . . . 9 {𝑠 ∣ ∃𝑡𝑧𝑟(𝑟:𝑡𝑆𝑟𝐴𝑠 = (𝑟 ∪ {⟨𝑡, (𝐺𝑟)⟩}))} = {𝑑 ∣ ∃𝑏𝑧𝑎(𝑎:𝑏𝑆𝑎𝐴𝑑 = (𝑎 ∪ {⟨𝑏, (𝐺𝑎)⟩}))}
73 tfrcllemaccex.u . . . . . . . . . . . 12 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
7473adantlr 469 . . . . . . . . . . 11 (((𝜑𝑧 ∈ On) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
7574adantlr 469 . . . . . . . . . 10 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
7675adantlr 469 . . . . . . . . 9 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
77 simpr 109 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → 𝑧𝑋)
78 simpr 109 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑏𝑧)
79 simplr 520 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑧𝑋)
80 ordtr1 4366 . . . . . . . . . . . . . 14 (Ord 𝑋 → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
811, 80syl 14 . . . . . . . . . . . . 13 (𝜑 → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
8281ad4antr 486 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ((𝑏𝑧𝑧𝑋) → 𝑏𝑋))
8378, 79, 82mp2and 430 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → 𝑏𝑋)
84 eleq1 2229 . . . . . . . . . . . . . 14 (𝑤 = 𝑏 → (𝑤𝑋𝑏𝑋))
85 feq2 5321 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (𝑔:𝑤𝑆𝑔:𝑏𝑆))
86 raleq 2661 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → (∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
8785, 86anbi12d 465 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → ((𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
8887exbidv 1813 . . . . . . . . . . . . . 14 (𝑤 = 𝑏 → (∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
8984, 88imbi12d 233 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → ((𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝑏𝑋 → ∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
90 simpllr 524 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
9189, 90, 78rspcdva 2835 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → (𝑏𝑋 → ∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
92 feq1 5320 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → (𝑔:𝑏𝑆𝑎:𝑏𝑆))
93 fveq1 5485 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → (𝑔𝑢) = (𝑎𝑢))
94 reseq1 4878 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑎 → (𝑔𝑢) = (𝑎𝑢))
9594fveq2d 5490 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑎 → (𝐺‘(𝑔𝑢)) = (𝐺‘(𝑎𝑢)))
9693, 95eqeq12d 2180 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑎 → ((𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
9796ralbidv 2466 . . . . . . . . . . . . . . 15 (𝑔 = 𝑎 → (∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
9892, 97anbi12d 465 . . . . . . . . . . . . . 14 (𝑔 = 𝑎 → ((𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢)))))
9998cbvexv 1906 . . . . . . . . . . . . 13 (∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))))
100 fveq2 5486 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑐 → (𝑎𝑢) = (𝑎𝑐))
101 reseq2 4879 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑐 → (𝑎𝑢) = (𝑎𝑐))
102101fveq2d 5490 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑐 → (𝐺‘(𝑎𝑢)) = (𝐺‘(𝑎𝑐)))
103100, 102eqeq12d 2180 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑐 → ((𝑎𝑢) = (𝐺‘(𝑎𝑢)) ↔ (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
104103cbvralv 2692 . . . . . . . . . . . . . . 15 (∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢)) ↔ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))
105104anbi2i 453 . . . . . . . . . . . . . 14 ((𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))) ↔ (𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
106105exbii 1593 . . . . . . . . . . . . 13 (∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑎𝑢) = (𝐺‘(𝑎𝑢))) ↔ ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
10799, 106bitri 183 . . . . . . . . . . . 12 (∃𝑔(𝑔:𝑏𝑆 ∧ ∀𝑢𝑏 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
10891, 107syl6ib 160 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → (𝑏𝑋 → ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐)))))
10983, 108mpd 13 . . . . . . . . . 10 (((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) ∧ 𝑏𝑧) → ∃𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
110109ralrimiva 2539 . . . . . . . . 9 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∀𝑏𝑧𝑎(𝑎:𝑏𝑆 ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝐺‘(𝑎𝑐))))
11118, 20, 21, 35, 45, 72, 76, 77, 110tfrcllemex 6328 . . . . . . . 8 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∃(:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))))
112 feq1 5320 . . . . . . . . . 10 ( = 𝑔 → (:𝑧𝑆𝑔:𝑧𝑆))
113 fveq1 5485 . . . . . . . . . . . 12 ( = 𝑔 → (𝑢) = (𝑔𝑢))
114 reseq1 4878 . . . . . . . . . . . . 13 ( = 𝑔 → (𝑢) = (𝑔𝑢))
115114fveq2d 5490 . . . . . . . . . . . 12 ( = 𝑔 → (𝐺‘(𝑢)) = (𝐺‘(𝑔𝑢)))
116113, 115eqeq12d 2180 . . . . . . . . . . 11 ( = 𝑔 → ((𝑢) = (𝐺‘(𝑢)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
117116ralbidv 2466 . . . . . . . . . 10 ( = 𝑔 → (∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
118112, 117anbi12d 465 . . . . . . . . 9 ( = 𝑔 → ((:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
119118cbvexv 1906 . . . . . . . 8 (∃(:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑢) = (𝐺‘(𝑢))) ↔ ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
120111, 119sylib 121 . . . . . . 7 ((((𝜑𝑧 ∈ On) ∧ ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ∧ 𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
121120exp31 362 . . . . . 6 ((𝜑𝑧 ∈ On) → (∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
122121expcom 115 . . . . 5 (𝑧 ∈ On → (𝜑 → (∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))))
123122a2d 26 . . . 4 (𝑧 ∈ On → ((𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (𝜑 → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))))
124 impexp 261 . . . . . 6 (((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
125124ralbii 2472 . . . . 5 (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ ∀𝑤𝑧 (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
126 r19.21v 2543 . . . . 5 (∀𝑤𝑧 (𝜑 → (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) ↔ (𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
127125, 126bitri 183 . . . 4 (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → ∀𝑤𝑧 (𝑤𝑋 → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
128 impexp 261 . . . 4 (((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ↔ (𝜑 → (𝑧𝑋 → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
129123, 127, 1283imtr4g 204 . . 3 (𝑧 ∈ On → (∀𝑤𝑧 ((𝜑𝑤𝑋) → ∃𝑔(𝑔:𝑤𝑆 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))))
13010, 17, 129tfis3 4563 . 2 (𝐶 ∈ On → ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
1313, 130mpcom 36 1 ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wal 1341   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wral 2444  wrex 2445  cun 3114  {csn 3576  cop 3579   cuni 3789  Ord word 4340  Oncon0 4341  suc csuc 4343  cres 4606  Fun wfun 5182  wf 5184  cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273
This theorem is referenced by:  tfrcllemres  6330
  Copyright terms: Public domain W3C validator