ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo4 GIF version

Theorem rmo4 2957
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rmo4 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 2483 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 an4 586 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)))
3 ancom 266 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑥𝐴))
43anbi1i 458 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
52, 4bitri 184 . . . . . . . 8 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
65imbi1i 238 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦))
7 impexp 263 . . . . . . 7 ((((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)))
8 impexp 263 . . . . . . 7 (((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
96, 7, 83bitri 206 . . . . . 6 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
109albii 1484 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
11 df-ral 2480 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
12 r19.21v 2574 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1310, 11, 123bitr2i 208 . . . 4 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1413albii 1484 . . 3 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
15 eleq1 2259 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
16 rmo4.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16anbi12d 473 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1817mo4 2106 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦))
19 df-ral 2480 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
2014, 18, 193bitr4i 212 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
211, 20bitri 184 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  ∃*wmo 2046  wcel 2167  wral 2475  ∃*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-cleq 2189  df-clel 2192  df-ral 2480  df-rmo 2483
This theorem is referenced by:  reu4  2958  disjnim  4024  supmoti  7059  lteupri  7684  elrealeu  7896  rereceu  7956  exbtwnz  10340  rsqrmo  11192  divalglemeunn  12086  divalglemeuneg  12088  bezoutlemeu  12174  pw2dvdseu  12336  mgmidmo  13015  mndinvmod  13086  dedekindeu  14859  dedekindicclemicc  14868
  Copyright terms: Public domain W3C validator