Proof of Theorem rmo4
| Step | Hyp | Ref
| Expression |
| 1 | | df-rmo 2483 |
. 2
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 2 | | an4 586 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓))) |
| 3 | | ancom 266 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
| 4 | 3 | anbi1i 458 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓))) |
| 5 | 2, 4 | bitri 184 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓))) |
| 6 | 5 | imbi1i 238 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) |
| 7 | | impexp 263 |
. . . . . . 7
⊢ ((((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 8 | | impexp 263 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
| 9 | 6, 7, 8 | 3bitri 206 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
| 10 | 9 | albii 1484 |
. . . . 5
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
| 11 | | df-ral 2480 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)))) |
| 12 | | r19.21v 2574 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 13 | 10, 11, 12 | 3bitr2i 208 |
. . . 4
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 14 | 13 | albii 1484 |
. . 3
⊢
(∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 15 | | eleq1 2259 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 16 | | rmo4.1 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 17 | 15, 16 | anbi12d 473 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 18 | 17 | mo4 2106 |
. . 3
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ 𝜓)) → 𝑥 = 𝑦)) |
| 19 | | df-ral 2480 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 20 | 14, 18, 19 | 3bitr4i 212 |
. 2
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 21 | 1, 20 | bitri 184 |
1
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |