![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrnmptg | GIF version |
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
elrnmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | rnmpt 4715 | . . 3 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
3 | 2 | eleq2i 2161 | . 2 ⊢ (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
4 | r19.29 2520 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵)) | |
5 | eleq1 2157 | . . . . . . . 8 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
6 | 5 | biimparc 294 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ 𝑉) |
7 | elex 2644 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
9 | 8 | rexlimivw 2498 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
10 | 4, 9 | syl 14 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → 𝐶 ∈ V) |
11 | 10 | ex 114 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V)) |
12 | eqeq1 2101 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) | |
13 | 12 | rexbidv 2392 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
14 | 13 | elab3g 2780 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
15 | 11, 14 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
16 | 3, 15 | syl5bb 191 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∈ wcel 1445 {cab 2081 ∀wral 2370 ∃wrex 2371 Vcvv 2633 ↦ cmpt 3921 ran crn 4468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-mpt 3923 df-cnv 4475 df-dm 4477 df-rn 4478 |
This theorem is referenced by: elrnmpti 4720 fliftel 5610 |
Copyright terms: Public domain | W3C validator |