ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptg GIF version

Theorem elrnmptg 4930
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptg (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
21rnmpt 4926 . . 3 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
32eleq2i 2272 . 2 (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 r19.29 2643 . . . . 5 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → ∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵))
5 eleq1 2268 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝑉𝐵𝑉))
65biimparc 299 . . . . . . 7 ((𝐵𝑉𝐶 = 𝐵) → 𝐶𝑉)
7 elex 2783 . . . . . . 7 (𝐶𝑉𝐶 ∈ V)
86, 7syl 14 . . . . . 6 ((𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
98rexlimivw 2619 . . . . 5 (∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
104, 9syl 14 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → 𝐶 ∈ V)
1110ex 115 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V))
12 eqeq1 2212 . . . . 5 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
1312rexbidv 2507 . . . 4 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1413elab3g 2924 . . 3 ((∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1511, 14syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
163, 15bitrid 192 1 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  {cab 2191  wral 2484  wrex 2485  Vcvv 2772  cmpt 4105  ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  elrnmpti  4931  fliftel  5862  2sqlem1  15591
  Copyright terms: Public domain W3C validator