![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrnmptg | GIF version |
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
elrnmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | rnmpt 4893 | . . 3 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
3 | 2 | eleq2i 2256 | . 2 ⊢ (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
4 | r19.29 2627 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵)) | |
5 | eleq1 2252 | . . . . . . . 8 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
6 | 5 | biimparc 299 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ 𝑉) |
7 | elex 2763 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
9 | 8 | rexlimivw 2603 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
10 | 4, 9 | syl 14 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → 𝐶 ∈ V) |
11 | 10 | ex 115 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V)) |
12 | eqeq1 2196 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) | |
13 | 12 | rexbidv 2491 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
14 | 13 | elab3g 2903 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
15 | 11, 14 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
16 | 3, 15 | bitrid 192 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 {cab 2175 ∀wral 2468 ∃wrex 2469 Vcvv 2752 ↦ cmpt 4079 ran crn 4645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-mpt 4081 df-cnv 4652 df-dm 4654 df-rn 4655 |
This theorem is referenced by: elrnmpti 4898 fliftel 5814 2sqlem1 14914 |
Copyright terms: Public domain | W3C validator |