ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt GIF version

Theorem fmpt 5646
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmpt (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
21fnmpt 5324 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹 Fn 𝐴)
31rnmpt 4859 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶}
4 r19.29 2607 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶))
5 eleq1 2233 . . . . . . . . 9 (𝑦 = 𝐶 → (𝑦𝐵𝐶𝐵))
65biimparc 297 . . . . . . . 8 ((𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
76rexlimivw 2583 . . . . . . 7 (∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
84, 7syl 14 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → 𝑦𝐵)
98ex 114 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶𝑦𝐵))
109abssdv 3221 . . . 4 (∀𝑥𝐴 𝐶𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶} ⊆ 𝐵)
113, 10eqsstrid 3193 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran 𝐹𝐵)
12 df-f 5202 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
132, 11, 12sylanbrc 415 . 2 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
14 fimacnv 5625 . . . 4 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
151mptpreima 5104 . . . 4 (𝐹𝐵) = {𝑥𝐴𝐶𝐵}
1614, 15eqtr3di 2218 . . 3 (𝐹:𝐴𝐵𝐴 = {𝑥𝐴𝐶𝐵})
17 rabid2 2646 . . 3 (𝐴 = {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 𝐶𝐵)
1816, 17sylib 121 . 2 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
1913, 18impbii 125 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  {crab 2452  wss 3121  cmpt 4050  ccnv 4610  ran crn 4612  cima 4614   Fn wfn 5193  wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by:  f1ompt  5647  fmpti  5648  fvmptelrn  5649  fmptd  5650  fmptdf  5653  rnmptss  5657  f1oresrab  5661  idref  5736  f1mpt  5750  f1stres  6138  f2ndres  6139  fmpox  6179  fmpoco  6195  iunon  6263  mptelixpg  6712  dom2lem  6750  uzf  9490  pcmptcl  12294  upxp  13066  txdis1cn  13072  cnmpt11  13077  cnmpt21  13085  fsumcncntop  13350  cncfmpt1f  13378  mulcncflem  13384  mulcncf  13385  cnmptlimc  13437  sincn  13484  coscn  13485
  Copyright terms: Public domain W3C validator