ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt GIF version

Theorem fmpt 5635
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmpt (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
21fnmpt 5314 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹 Fn 𝐴)
31rnmpt 4852 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶}
4 r19.29 2603 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶))
5 eleq1 2229 . . . . . . . . 9 (𝑦 = 𝐶 → (𝑦𝐵𝐶𝐵))
65biimparc 297 . . . . . . . 8 ((𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
76rexlimivw 2579 . . . . . . 7 (∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
84, 7syl 14 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → 𝑦𝐵)
98ex 114 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶𝑦𝐵))
109abssdv 3216 . . . 4 (∀𝑥𝐴 𝐶𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶} ⊆ 𝐵)
113, 10eqsstrid 3188 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran 𝐹𝐵)
12 df-f 5192 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
132, 11, 12sylanbrc 414 . 2 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
14 fimacnv 5614 . . . 4 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
151mptpreima 5097 . . . 4 (𝐹𝐵) = {𝑥𝐴𝐶𝐵}
1614, 15eqtr3di 2214 . . 3 (𝐹:𝐴𝐵𝐴 = {𝑥𝐴𝐶𝐵})
17 rabid2 2642 . . 3 (𝐴 = {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 𝐶𝐵)
1816, 17sylib 121 . 2 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
1913, 18impbii 125 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  {crab 2448  wss 3116  cmpt 4043  ccnv 4603  ran crn 4605  cima 4607   Fn wfn 5183  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  f1ompt  5636  fmpti  5637  fvmptelrn  5638  fmptd  5639  fmptdf  5642  rnmptss  5646  f1oresrab  5650  idref  5725  f1mpt  5739  f1stres  6127  f2ndres  6128  fmpox  6168  fmpoco  6184  iunon  6252  mptelixpg  6700  dom2lem  6738  uzf  9469  pcmptcl  12272  upxp  12912  txdis1cn  12918  cnmpt11  12923  cnmpt21  12931  fsumcncntop  13196  cncfmpt1f  13224  mulcncflem  13230  mulcncf  13231  cnmptlimc  13283  sincn  13330  coscn  13331
  Copyright terms: Public domain W3C validator