ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt GIF version

Theorem fmpt 5743
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmpt (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
21fnmpt 5412 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹 Fn 𝐴)
31rnmpt 4935 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶}
4 r19.29 2644 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶))
5 eleq1 2269 . . . . . . . . 9 (𝑦 = 𝐶 → (𝑦𝐵𝐶𝐵))
65biimparc 299 . . . . . . . 8 ((𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
76rexlimivw 2620 . . . . . . 7 (∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
84, 7syl 14 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → 𝑦𝐵)
98ex 115 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶𝑦𝐵))
109abssdv 3271 . . . 4 (∀𝑥𝐴 𝐶𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶} ⊆ 𝐵)
113, 10eqsstrid 3243 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran 𝐹𝐵)
12 df-f 5284 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
132, 11, 12sylanbrc 417 . 2 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
14 fimacnv 5722 . . . 4 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
151mptpreima 5185 . . . 4 (𝐹𝐵) = {𝑥𝐴𝐶𝐵}
1614, 15eqtr3di 2254 . . 3 (𝐹:𝐴𝐵𝐴 = {𝑥𝐴𝐶𝐵})
17 rabid2 2684 . . 3 (𝐴 = {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 𝐶𝐵)
1816, 17sylib 122 . 2 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
1913, 18impbii 126 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  {crab 2489  wss 3170  cmpt 4113  ccnv 4682  ran crn 4684  cima 4686   Fn wfn 5275  wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288
This theorem is referenced by:  f1ompt  5744  fmpti  5745  fvmptelcdm  5746  fmptd  5747  fmptdf  5750  rnmptss  5754  f1oresrab  5758  idref  5838  f1mpt  5853  f1stres  6258  f2ndres  6259  fmpox  6299  fmpoco  6315  iunon  6383  mptelixpg  6834  dom2lem  6876  uzf  9671  pcmptcl  12740  gsumfzmhm2  13755  upxp  14819  txdis1cn  14825  cnmpt11  14830  cnmpt21  14838  fsumcncntop  15114  cncfmpt1f  15145  mulcncflem  15154  mulcncf  15155  cnmptlimc  15221  sincn  15316  coscn  15317  lgseisenlem3  15624
  Copyright terms: Public domain W3C validator