ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt GIF version

Theorem fmpt 5712
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmpt (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐶)
21fnmpt 5384 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹 Fn 𝐴)
31rnmpt 4914 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶}
4 r19.29 2634 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶))
5 eleq1 2259 . . . . . . . . 9 (𝑦 = 𝐶 → (𝑦𝐵𝐶𝐵))
65biimparc 299 . . . . . . . 8 ((𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
76rexlimivw 2610 . . . . . . 7 (∃𝑥𝐴 (𝐶𝐵𝑦 = 𝐶) → 𝑦𝐵)
84, 7syl 14 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → 𝑦𝐵)
98ex 115 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶𝑦𝐵))
109abssdv 3257 . . . 4 (∀𝑥𝐴 𝐶𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐶} ⊆ 𝐵)
113, 10eqsstrid 3229 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran 𝐹𝐵)
12 df-f 5262 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
132, 11, 12sylanbrc 417 . 2 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
14 fimacnv 5691 . . . 4 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
151mptpreima 5163 . . . 4 (𝐹𝐵) = {𝑥𝐴𝐶𝐵}
1614, 15eqtr3di 2244 . . 3 (𝐹:𝐴𝐵𝐴 = {𝑥𝐴𝐶𝐵})
17 rabid2 2674 . . 3 (𝐴 = {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 𝐶𝐵)
1816, 17sylib 122 . 2 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
1913, 18impbii 126 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  {crab 2479  wss 3157  cmpt 4094  ccnv 4662  ran crn 4664  cima 4666   Fn wfn 5253  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  f1ompt  5713  fmpti  5714  fvmptelcdm  5715  fmptd  5716  fmptdf  5719  rnmptss  5723  f1oresrab  5727  idref  5803  f1mpt  5818  f1stres  6217  f2ndres  6218  fmpox  6258  fmpoco  6274  iunon  6342  mptelixpg  6793  dom2lem  6831  uzf  9604  pcmptcl  12511  gsumfzmhm2  13474  upxp  14508  txdis1cn  14514  cnmpt11  14519  cnmpt21  14527  fsumcncntop  14803  cncfmpt1f  14834  mulcncflem  14843  mulcncf  14844  cnmptlimc  14910  sincn  15005  coscn  15006  lgseisenlem3  15313
  Copyright terms: Public domain W3C validator