ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx GIF version

Theorem neitx 12908
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x 𝑋 = 𝐽
neitx.y 𝑌 = 𝐾
Assertion
Ref Expression
neitx (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))

Proof of Theorem neitx
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6 𝑋 = 𝐽
21neii1 12787 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐴𝑋)
32ad2ant2r 501 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐴𝑋)
4 neitx.y . . . . . 6 𝑌 = 𝐾
54neii1 12787 . . . . 5 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐵𝑌)
65ad2ant2l 500 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐵𝑌)
7 xpss12 4711 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
83, 6, 7syl2anc 409 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
91, 4txuni 12903 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
109adantr 274 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
118, 10sseqtrd 3180 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾))
12 simp-5l 533 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
13 simp-4r 532 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐽)
14 simplr 520 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐾)
15 txopn 12905 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑎𝐽𝑏𝐾)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
1612, 13, 14, 15syl12anc 1226 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
17 simpr1l 1044 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝐶𝑎)
18173anassrs 1219 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐶𝑎)
19 simprl 521 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐷𝑏)
20 xpss12 4711 . . . . . 6 ((𝐶𝑎𝐷𝑏) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
2118, 19, 20syl2anc 409 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
22 simpr1r 1045 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝑎𝐴)
23223anassrs 1219 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐴)
24 simprr 522 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐵)
25 xpss12 4711 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
2623, 24, 25syl2anc 409 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
27 sseq2 3166 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → ((𝐶 × 𝐷) ⊆ 𝑐 ↔ (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)))
28 sseq1 3165 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → (𝑐 ⊆ (𝐴 × 𝐵) ↔ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)))
2927, 28anbi12d 465 . . . . . 6 (𝑐 = (𝑎 × 𝑏) → (((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)) ↔ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))))
3029rspcev 2830 . . . . 5 (((𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾) ∧ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
3116, 21, 26, 30syl12anc 1226 . . . 4 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
32 neii2 12789 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3332ad2ant2l 500 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3433ad2antrr 480 . . . 4 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3531, 34r19.29a 2609 . . 3 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
36 neii2 12789 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3736ad2ant2r 501 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3835, 37r19.29a 2609 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
39 txtop 12900 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4039adantr 274 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐽 ×t 𝐾) ∈ Top)
411neiss2 12782 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐶𝑋)
4241ad2ant2r 501 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐶𝑋)
434neiss2 12782 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐷𝑌)
4443ad2ant2l 500 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐷𝑌)
45 xpss12 4711 . . . . 5 ((𝐶𝑋𝐷𝑌) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4642, 44, 45syl2anc 409 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4746, 10sseqtrd 3180 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾))
48 eqid 2165 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
4948isnei 12784 . . 3 (((𝐽 ×t 𝐾) ∈ Top ∧ (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾)) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5040, 47, 49syl2anc 409 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5111, 38, 50mpbir2and 934 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  wss 3116   cuni 3789   × cxp 4602  cfv 5188  (class class class)co 5842  Topctop 12635  neicnei 12778   ×t ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-nei 12779  df-tx 12893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator