ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx GIF version

Theorem neitx 14447
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x 𝑋 = 𝐽
neitx.y 𝑌 = 𝐾
Assertion
Ref Expression
neitx (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))

Proof of Theorem neitx
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6 𝑋 = 𝐽
21neii1 14326 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐴𝑋)
32ad2ant2r 509 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐴𝑋)
4 neitx.y . . . . . 6 𝑌 = 𝐾
54neii1 14326 . . . . 5 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐵𝑌)
65ad2ant2l 508 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐵𝑌)
7 xpss12 4767 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
83, 6, 7syl2anc 411 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
91, 4txuni 14442 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
109adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
118, 10sseqtrd 3218 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾))
12 simp-5l 543 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
13 simp-4r 542 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐽)
14 simplr 528 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐾)
15 txopn 14444 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑎𝐽𝑏𝐾)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
1612, 13, 14, 15syl12anc 1247 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
17 simpr1l 1056 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝐶𝑎)
18173anassrs 1231 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐶𝑎)
19 simprl 529 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐷𝑏)
20 xpss12 4767 . . . . . 6 ((𝐶𝑎𝐷𝑏) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
2118, 19, 20syl2anc 411 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
22 simpr1r 1057 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝑎𝐴)
23223anassrs 1231 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐴)
24 simprr 531 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐵)
25 xpss12 4767 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
2623, 24, 25syl2anc 411 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
27 sseq2 3204 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → ((𝐶 × 𝐷) ⊆ 𝑐 ↔ (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)))
28 sseq1 3203 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → (𝑐 ⊆ (𝐴 × 𝐵) ↔ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)))
2927, 28anbi12d 473 . . . . . 6 (𝑐 = (𝑎 × 𝑏) → (((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)) ↔ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))))
3029rspcev 2865 . . . . 5 (((𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾) ∧ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
3116, 21, 26, 30syl12anc 1247 . . . 4 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
32 neii2 14328 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3332ad2ant2l 508 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3433ad2antrr 488 . . . 4 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3531, 34r19.29a 2637 . . 3 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
36 neii2 14328 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3736ad2ant2r 509 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3835, 37r19.29a 2637 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
39 txtop 14439 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4039adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐽 ×t 𝐾) ∈ Top)
411neiss2 14321 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐶𝑋)
4241ad2ant2r 509 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐶𝑋)
434neiss2 14321 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐷𝑌)
4443ad2ant2l 508 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐷𝑌)
45 xpss12 4767 . . . . 5 ((𝐶𝑋𝐷𝑌) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4642, 44, 45syl2anc 411 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4746, 10sseqtrd 3218 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾))
48 eqid 2193 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
4948isnei 14323 . . 3 (((𝐽 ×t 𝐾) ∈ Top ∧ (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾)) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5040, 47, 49syl2anc 411 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5111, 38, 50mpbir2and 946 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  wss 3154   cuni 3836   × cxp 4658  cfv 5255  (class class class)co 5919  Topctop 14176  neicnei 14317   ×t ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-topgen 12874  df-top 14177  df-topon 14190  df-bases 14222  df-nei 14318  df-tx 14432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator