ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx GIF version

Theorem neitx 12476
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x 𝑋 = 𝐽
neitx.y 𝑌 = 𝐾
Assertion
Ref Expression
neitx (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))

Proof of Theorem neitx
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6 𝑋 = 𝐽
21neii1 12355 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐴𝑋)
32ad2ant2r 501 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐴𝑋)
4 neitx.y . . . . . 6 𝑌 = 𝐾
54neii1 12355 . . . . 5 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐵𝑌)
65ad2ant2l 500 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐵𝑌)
7 xpss12 4654 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
83, 6, 7syl2anc 409 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
91, 4txuni 12471 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
109adantr 274 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
118, 10sseqtrd 3140 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾))
12 simp-5l 533 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
13 simp-4r 532 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐽)
14 simplr 520 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐾)
15 txopn 12473 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑎𝐽𝑏𝐾)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
1612, 13, 14, 15syl12anc 1215 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
17 simpr1l 1039 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝐶𝑎)
18173anassrs 1208 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐶𝑎)
19 simprl 521 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐷𝑏)
20 xpss12 4654 . . . . . 6 ((𝐶𝑎𝐷𝑏) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
2118, 19, 20syl2anc 409 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
22 simpr1r 1040 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝑎𝐴)
23223anassrs 1208 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐴)
24 simprr 522 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐵)
25 xpss12 4654 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
2623, 24, 25syl2anc 409 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
27 sseq2 3126 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → ((𝐶 × 𝐷) ⊆ 𝑐 ↔ (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)))
28 sseq1 3125 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → (𝑐 ⊆ (𝐴 × 𝐵) ↔ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)))
2927, 28anbi12d 465 . . . . . 6 (𝑐 = (𝑎 × 𝑏) → (((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)) ↔ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))))
3029rspcev 2793 . . . . 5 (((𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾) ∧ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
3116, 21, 26, 30syl12anc 1215 . . . 4 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
32 neii2 12357 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3332ad2ant2l 500 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3433ad2antrr 480 . . . 4 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3531, 34r19.29a 2578 . . 3 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
36 neii2 12357 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3736ad2ant2r 501 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3835, 37r19.29a 2578 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
39 txtop 12468 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4039adantr 274 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐽 ×t 𝐾) ∈ Top)
411neiss2 12350 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐶𝑋)
4241ad2ant2r 501 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐶𝑋)
434neiss2 12350 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐷𝑌)
4443ad2ant2l 500 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐷𝑌)
45 xpss12 4654 . . . . 5 ((𝐶𝑋𝐷𝑌) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4642, 44, 45syl2anc 409 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4746, 10sseqtrd 3140 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾))
48 eqid 2140 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
4948isnei 12352 . . 3 (((𝐽 ×t 𝐾) ∈ Top ∧ (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾)) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5040, 47, 49syl2anc 409 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5111, 38, 50mpbir2and 929 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418  wss 3076   cuni 3744   × cxp 4545  cfv 5131  (class class class)co 5782  Topctop 12203  neicnei 12346   ×t ctx 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-topgen 12180  df-top 12204  df-topon 12217  df-bases 12249  df-nei 12347  df-tx 12461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator