Step | Hyp | Ref
| Expression |
1 | | neitx.x |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | neii1 12900 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐴 ⊆ 𝑋) |
3 | 2 | ad2ant2r 506 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐴 ⊆ 𝑋) |
4 | | neitx.y |
. . . . . 6
⊢ 𝑌 = ∪
𝐾 |
5 | 4 | neii1 12900 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐵 ⊆ 𝑌) |
6 | 5 | ad2ant2l 505 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐵 ⊆ 𝑌) |
7 | | xpss12 4716 |
. . . 4
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌)) |
8 | 3, 6, 7 | syl2anc 409 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌)) |
9 | 1, 4 | txuni 13016 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝐽 ×t 𝐾)) |
10 | 9 | adantr 274 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝑋 × 𝑌) = ∪ (𝐽 ×t 𝐾)) |
11 | 8, 10 | sseqtrd 3185 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ ∪
(𝐽 ×t
𝐾)) |
12 | | simp-5l 538 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
13 | | simp-4r 537 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → 𝑎 ∈ 𝐽) |
14 | | simplr 525 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → 𝑏 ∈ 𝐾) |
15 | | txopn 13018 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐾)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾)) |
16 | 12, 13, 14, 15 | syl12anc 1231 |
. . . . 5
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾)) |
17 | | simpr1l 1049 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ ((𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴) ∧ 𝑏 ∈ 𝐾 ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵))) → 𝐶 ⊆ 𝑎) |
18 | 17 | 3anassrs 1224 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → 𝐶 ⊆ 𝑎) |
19 | | simprl 526 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → 𝐷 ⊆ 𝑏) |
20 | | xpss12 4716 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝑎 ∧ 𝐷 ⊆ 𝑏) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)) |
21 | 18, 19, 20 | syl2anc 409 |
. . . . 5
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)) |
22 | | simpr1r 1050 |
. . . . . . 7
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ ((𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴) ∧ 𝑏 ∈ 𝐾 ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵))) → 𝑎 ⊆ 𝐴) |
23 | 22 | 3anassrs 1224 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → 𝑎 ⊆ 𝐴) |
24 | | simprr 527 |
. . . . . 6
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → 𝑏 ⊆ 𝐵) |
25 | | xpss12 4716 |
. . . . . 6
⊢ ((𝑎 ⊆ 𝐴 ∧ 𝑏 ⊆ 𝐵) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)) |
26 | 23, 24, 25 | syl2anc 409 |
. . . . 5
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)) |
27 | | sseq2 3171 |
. . . . . . 7
⊢ (𝑐 = (𝑎 × 𝑏) → ((𝐶 × 𝐷) ⊆ 𝑐 ↔ (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))) |
28 | | sseq1 3170 |
. . . . . . 7
⊢ (𝑐 = (𝑎 × 𝑏) → (𝑐 ⊆ (𝐴 × 𝐵) ↔ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) |
29 | 27, 28 | anbi12d 470 |
. . . . . 6
⊢ (𝑐 = (𝑎 × 𝑏) → (((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵)) ↔ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)))) |
30 | 29 | rspcev 2834 |
. . . . 5
⊢ (((𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾) ∧ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵))) |
31 | 16, 21, 26, 30 | syl12anc 1231 |
. . . 4
⊢
(((((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) ∧ 𝑏 ∈ 𝐾) ∧ (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵))) |
32 | | neii2 12902 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → ∃𝑏 ∈ 𝐾 (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) |
33 | 32 | ad2ant2l 505 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑏 ∈ 𝐾 (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) |
34 | 33 | ad2antrr 485 |
. . . 4
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) → ∃𝑏 ∈ 𝐾 (𝐷 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝐵)) |
35 | 31, 34 | r19.29a 2613 |
. . 3
⊢
(((((𝐽 ∈ Top
∧ 𝐾 ∈ Top) ∧
(𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎 ∈ 𝐽) ∧ (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵))) |
36 | | neii2 12902 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → ∃𝑎 ∈ 𝐽 (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) |
37 | 36 | ad2ant2r 506 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑎 ∈ 𝐽 (𝐶 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝐴)) |
38 | 35, 37 | r19.29a 2613 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵))) |
39 | | txtop 13013 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top) |
40 | 39 | adantr 274 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐽 ×t 𝐾) ∈ Top) |
41 | 1 | neiss2 12895 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐶 ⊆ 𝑋) |
42 | 41 | ad2ant2r 506 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐶 ⊆ 𝑋) |
43 | 4 | neiss2 12895 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐷 ⊆ 𝑌) |
44 | 43 | ad2ant2l 505 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐷 ⊆ 𝑌) |
45 | | xpss12 4716 |
. . . . 5
⊢ ((𝐶 ⊆ 𝑋 ∧ 𝐷 ⊆ 𝑌) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌)) |
46 | 42, 44, 45 | syl2anc 409 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌)) |
47 | 46, 10 | sseqtrd 3185 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ ∪
(𝐽 ×t
𝐾)) |
48 | | eqid 2170 |
. . . 4
⊢ ∪ (𝐽
×t 𝐾) =
∪ (𝐽 ×t 𝐾) |
49 | 48 | isnei 12897 |
. . 3
⊢ (((𝐽 ×t 𝐾) ∈ Top ∧ (𝐶 × 𝐷) ⊆ ∪
(𝐽 ×t
𝐾)) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ ∪
(𝐽 ×t
𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵))))) |
50 | 40, 47, 49 | syl2anc 409 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ ∪
(𝐽 ×t
𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐 ∧ 𝑐 ⊆ (𝐴 × 𝐵))))) |
51 | 11, 38, 50 | mpbir2and 939 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷))) |