ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp GIF version

Theorem ghmgrp 13621
Description: The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
ghmgrp.3 (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
ghmgrp (𝜑𝐻 ∈ Grp)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmgrp
Dummy variables 𝑎 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
3 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
4 ghmgrp.p . . 3 + = (+g𝐺)
5 ghmgrp.q . . 3 = (+g𝐻)
6 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmgrp.3 . . . 4 (𝜑𝐺 ∈ Grp)
87grpmndd 13512 . . 3 (𝜑𝐺 ∈ Mnd)
91, 2, 3, 4, 5, 6, 8mhmmnd 13619 . 2 (𝜑𝐻 ∈ Mnd)
10 fof 5524 . . . . . . . 8 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
116, 10syl 14 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
1211ad3antrrr 492 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐹:𝑋𝑌)
137ad3antrrr 492 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐺 ∈ Grp)
14 simplr 528 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝑖𝑋)
15 eqid 2209 . . . . . . . 8 (invg𝐺) = (invg𝐺)
162, 15grpinvcl 13547 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → ((invg𝐺)‘𝑖) ∈ 𝑋)
1713, 14, 16syl2anc 411 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((invg𝐺)‘𝑖) ∈ 𝑋)
1812, 17ffvelcdmd 5744 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘((invg𝐺)‘𝑖)) ∈ 𝑌)
1913adant1r 1236 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
207, 16sylan 283 . . . . . . . 8 ((𝜑𝑖𝑋) → ((invg𝐺)‘𝑖) ∈ 𝑋)
21 simpr 110 . . . . . . . 8 ((𝜑𝑖𝑋) → 𝑖𝑋)
2219, 20, 21mhmlem 13617 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
2322ad4ant13 513 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
24 eqid 2209 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
252, 4, 24, 15grplinv 13549 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → (((invg𝐺)‘𝑖) + 𝑖) = (0g𝐺))
2625fveq2d 5607 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g𝐺)))
2713, 14, 26syl2anc 411 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g𝐺)))
281, 2, 3, 4, 5, 6, 8, 24mhmid 13618 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
2928ad3antrrr 492 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(0g𝐺)) = (0g𝐻))
3027, 29eqtrd 2242 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (0g𝐻))
31 simpr 110 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹𝑖) = 𝑎)
3231oveq2d 5990 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) 𝑎))
3323, 30, 323eqtr3rd 2251 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻))
34 oveq1 5981 . . . . . . 7 (𝑓 = (𝐹‘((invg𝐺)‘𝑖)) → (𝑓 𝑎) = ((𝐹‘((invg𝐺)‘𝑖)) 𝑎))
3534eqeq1d 2218 . . . . . 6 (𝑓 = (𝐹‘((invg𝐺)‘𝑖)) → ((𝑓 𝑎) = (0g𝐻) ↔ ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻)))
3635rspcev 2887 . . . . 5 (((𝐹‘((invg𝐺)‘𝑖)) ∈ 𝑌 ∧ ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻)) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
3718, 33, 36syl2anc 411 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
38 foelcdmi 5659 . . . . 5 ((𝐹:𝑋onto𝑌𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
396, 38sylan 283 . . . 4 ((𝜑𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
4037, 39r19.29a 2654 . . 3 ((𝜑𝑎𝑌) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
4140ralrimiva 2583 . 2 (𝜑 → ∀𝑎𝑌𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
42 eqid 2209 . . 3 (0g𝐻) = (0g𝐻)
433, 5, 42isgrp 13505 . 2 (𝐻 ∈ Grp ↔ (𝐻 ∈ Mnd ∧ ∀𝑎𝑌𝑓𝑌 (𝑓 𝑎) = (0g𝐻)))
449, 41, 43sylanbrc 417 1 (𝜑𝐻 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wral 2488  wrex 2489  wf 5290  ontowfo 5292  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Mndcmnd 13415  Grpcgrp 13499  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503
This theorem is referenced by:  ghmfghm  13829  ghmabl  13831
  Copyright terms: Public domain W3C validator