ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmcmn GIF version

Theorem ghmcmn 13457
Description: The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmcmn.3 (𝜑𝐺 ∈ CMnd)
Assertion
Ref Expression
ghmcmn (𝜑𝐻 ∈ CMnd)
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmcmn
Dummy variables 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmabl.x . . 3 𝑋 = (Base‘𝐺)
3 ghmabl.y . . 3 𝑌 = (Base‘𝐻)
4 ghmabl.p . . 3 + = (+g𝐺)
5 ghmabl.q . . 3 = (+g𝐻)
6 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmcmn.3 . . . 4 (𝜑𝐺 ∈ CMnd)
8 cmnmnd 13431 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
97, 8syl 14 . . 3 (𝜑𝐺 ∈ Mnd)
101, 2, 3, 4, 5, 6, 9mhmmnd 13246 . 2 (𝜑𝐻 ∈ Mnd)
11 simp-6l 545 . . . . . . . . . . 11 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝜑)
1211, 7syl 14 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝐺 ∈ CMnd)
13 simp-4r 542 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝑎𝑋)
14 simplr 528 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝑏𝑋)
152, 4cmncom 13432 . . . . . . . . . 10 ((𝐺 ∈ CMnd ∧ 𝑎𝑋𝑏𝑋) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
1612, 13, 14, 15syl3anc 1249 . . . . . . . . 9 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
1716fveq2d 5562 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑏 + 𝑎)))
1811, 1syl3an1 1282 . . . . . . . . 9 ((((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918, 13, 14mhmlem 13244 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
2018, 14, 13mhmlem 13244 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑏 + 𝑎)) = ((𝐹𝑏) (𝐹𝑎)))
2117, 19, 203eqtr3d 2237 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑏) (𝐹𝑎)))
22 simpllr 534 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹𝑎) = 𝑖)
23 simpr 110 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹𝑏) = 𝑗)
2422, 23oveq12d 5940 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑎) (𝐹𝑏)) = (𝑖 𝑗))
2523, 22oveq12d 5940 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑏) (𝐹𝑎)) = (𝑗 𝑖))
2621, 24, 253eqtr3d 2237 . . . . . 6 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝑖 𝑗) = (𝑗 𝑖))
27 foelcdmi 5613 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
286, 27sylan 283 . . . . . . 7 ((𝜑𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
2928ad5ant13 519 . . . . . 6 (((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
3026, 29r19.29a 2640 . . . . 5 (((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) → (𝑖 𝑗) = (𝑗 𝑖))
31 foelcdmi 5613 . . . . . . 7 ((𝐹:𝑋onto𝑌𝑖𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
326, 31sylan 283 . . . . . 6 ((𝜑𝑖𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
3332adantr 276 . . . . 5 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
3430, 33r19.29a 2640 . . . 4 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → (𝑖 𝑗) = (𝑗 𝑖))
3534anasss 399 . . 3 ((𝜑 ∧ (𝑖𝑌𝑗𝑌)) → (𝑖 𝑗) = (𝑗 𝑖))
3635ralrimivva 2579 . 2 (𝜑 → ∀𝑖𝑌𝑗𝑌 (𝑖 𝑗) = (𝑗 𝑖))
373, 5iscmn 13423 . 2 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑖𝑌𝑗𝑌 (𝑖 𝑗) = (𝑗 𝑖)))
3810, 36, 37sylanbrc 417 1 (𝜑𝐻 ∈ CMnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  ontowfo 5256  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-cmn 13416
This theorem is referenced by:  ghmabl  13458
  Copyright terms: Public domain W3C validator