| Step | Hyp | Ref
 | Expression | 
| 1 |   | ghmabl.f | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 2 |   | ghmabl.x | 
. . 3
⊢ 𝑋 = (Base‘𝐺) | 
| 3 |   | ghmabl.y | 
. . 3
⊢ 𝑌 = (Base‘𝐻) | 
| 4 |   | ghmabl.p | 
. . 3
⊢  + =
(+g‘𝐺) | 
| 5 |   | ghmabl.q | 
. . 3
⊢  ⨣ =
(+g‘𝐻) | 
| 6 |   | ghmabl.1 | 
. . 3
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | 
| 7 |   | ghmcmn.3 | 
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| 8 |   | cmnmnd 13431 | 
. . . 4
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | 
| 9 | 7, 8 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 10 | 1, 2, 3, 4, 5, 6, 9 | mhmmnd 13246 | 
. 2
⊢ (𝜑 → 𝐻 ∈ Mnd) | 
| 11 |   | simp-6l 545 | 
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝜑) | 
| 12 | 11, 7 | syl 14 | 
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝐺 ∈ CMnd) | 
| 13 |   | simp-4r 542 | 
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝑎 ∈ 𝑋) | 
| 14 |   | simplr 528 | 
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝑏 ∈ 𝑋) | 
| 15 | 2, 4 | cmncom 13432 | 
. . . . . . . . . 10
⊢ ((𝐺 ∈ CMnd ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎 + 𝑏) = (𝑏 + 𝑎)) | 
| 16 | 12, 13, 14, 15 | syl3anc 1249 | 
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝑎 + 𝑏) = (𝑏 + 𝑎)) | 
| 17 | 16 | fveq2d 5562 | 
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑏 + 𝑎))) | 
| 18 | 11, 1 | syl3an1 1282 | 
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 19 | 18, 13, 14 | mhmlem 13244 | 
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) | 
| 20 | 18, 14, 13 | mhmlem 13244 | 
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘(𝑏 + 𝑎)) = ((𝐹‘𝑏) ⨣ (𝐹‘𝑎))) | 
| 21 | 17, 19, 20 | 3eqtr3d 2237 | 
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑏) ⨣ (𝐹‘𝑎))) | 
| 22 |   | simpllr 534 | 
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘𝑎) = 𝑖) | 
| 23 |   | simpr 110 | 
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘𝑏) = 𝑗) | 
| 24 | 22, 23 | oveq12d 5940 | 
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = (𝑖 ⨣ 𝑗)) | 
| 25 | 23, 22 | oveq12d 5940 | 
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → ((𝐹‘𝑏) ⨣ (𝐹‘𝑎)) = (𝑗 ⨣ 𝑖)) | 
| 26 | 21, 24, 25 | 3eqtr3d 2237 | 
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) | 
| 27 |   | foelcdmi 5613 | 
. . . . . . . 8
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑗 ∈ 𝑌) → ∃𝑏 ∈ 𝑋 (𝐹‘𝑏) = 𝑗) | 
| 28 | 6, 27 | sylan 283 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ∃𝑏 ∈ 𝑋 (𝐹‘𝑏) = 𝑗) | 
| 29 | 28 | ad5ant13 519 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) → ∃𝑏 ∈ 𝑋 (𝐹‘𝑏) = 𝑗) | 
| 30 | 26, 29 | r19.29a 2640 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) | 
| 31 |   | foelcdmi 5613 | 
. . . . . . 7
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑖 ∈ 𝑌) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = 𝑖) | 
| 32 | 6, 31 | sylan 283 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = 𝑖) | 
| 33 | 32 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = 𝑖) | 
| 34 | 30, 33 | r19.29a 2640 | 
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) | 
| 35 | 34 | anasss 399 | 
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑌 ∧ 𝑗 ∈ 𝑌)) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) | 
| 36 | 35 | ralrimivva 2579 | 
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑌 ∀𝑗 ∈ 𝑌 (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) | 
| 37 | 3, 5 | iscmn 13423 | 
. 2
⊢ (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑖 ∈ 𝑌 ∀𝑗 ∈ 𝑌 (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖))) | 
| 38 | 10, 36, 37 | sylanbrc 417 | 
1
⊢ (𝜑 → 𝐻 ∈ CMnd) |