ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmcmn GIF version

Theorem ghmcmn 13397
Description: The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmcmn.3 (𝜑𝐺 ∈ CMnd)
Assertion
Ref Expression
ghmcmn (𝜑𝐻 ∈ CMnd)
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmcmn
Dummy variables 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmabl.x . . 3 𝑋 = (Base‘𝐺)
3 ghmabl.y . . 3 𝑌 = (Base‘𝐻)
4 ghmabl.p . . 3 + = (+g𝐺)
5 ghmabl.q . . 3 = (+g𝐻)
6 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmcmn.3 . . . 4 (𝜑𝐺 ∈ CMnd)
8 cmnmnd 13371 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
97, 8syl 14 . . 3 (𝜑𝐺 ∈ Mnd)
101, 2, 3, 4, 5, 6, 9mhmmnd 13186 . 2 (𝜑𝐻 ∈ Mnd)
11 simp-6l 545 . . . . . . . . . . 11 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝜑)
1211, 7syl 14 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝐺 ∈ CMnd)
13 simp-4r 542 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝑎𝑋)
14 simplr 528 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝑏𝑋)
152, 4cmncom 13372 . . . . . . . . . 10 ((𝐺 ∈ CMnd ∧ 𝑎𝑋𝑏𝑋) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
1612, 13, 14, 15syl3anc 1249 . . . . . . . . 9 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
1716fveq2d 5558 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑏 + 𝑎)))
1811, 1syl3an1 1282 . . . . . . . . 9 ((((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918, 13, 14mhmlem 13184 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
2018, 14, 13mhmlem 13184 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑏 + 𝑎)) = ((𝐹𝑏) (𝐹𝑎)))
2117, 19, 203eqtr3d 2234 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑏) (𝐹𝑎)))
22 simpllr 534 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹𝑎) = 𝑖)
23 simpr 110 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹𝑏) = 𝑗)
2422, 23oveq12d 5936 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑎) (𝐹𝑏)) = (𝑖 𝑗))
2523, 22oveq12d 5936 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑏) (𝐹𝑎)) = (𝑗 𝑖))
2621, 24, 253eqtr3d 2234 . . . . . 6 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝑖 𝑗) = (𝑗 𝑖))
27 foelcdmi 5609 . . . . . . . 8 ((𝐹:𝑋onto𝑌𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
286, 27sylan 283 . . . . . . 7 ((𝜑𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
2928ad5ant13 519 . . . . . 6 (((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
3026, 29r19.29a 2637 . . . . 5 (((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) → (𝑖 𝑗) = (𝑗 𝑖))
31 foelcdmi 5609 . . . . . . 7 ((𝐹:𝑋onto𝑌𝑖𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
326, 31sylan 283 . . . . . 6 ((𝜑𝑖𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
3332adantr 276 . . . . 5 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
3430, 33r19.29a 2637 . . . 4 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → (𝑖 𝑗) = (𝑗 𝑖))
3534anasss 399 . . 3 ((𝜑 ∧ (𝑖𝑌𝑗𝑌)) → (𝑖 𝑗) = (𝑗 𝑖))
3635ralrimivva 2576 . 2 (𝜑 → ∀𝑖𝑌𝑗𝑌 (𝑖 𝑗) = (𝑗 𝑖))
373, 5iscmn 13363 . 2 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑖𝑌𝑗𝑌 (𝑖 𝑗) = (𝑗 𝑖)))
3810, 36, 37sylanbrc 417 1 (𝜑𝐻 ∈ CMnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  ontowfo 5252  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-cmn 13356
This theorem is referenced by:  ghmabl  13398
  Copyright terms: Public domain W3C validator