ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmid GIF version

Theorem mhmid 13495
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
mhmmnd.3 (𝜑𝐺 ∈ Mnd)
mhmid.0 0 = (0g𝐺)
Assertion
Ref Expression
mhmid (𝜑 → (𝐹0 ) = (0g𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦

Proof of Theorem mhmid
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.y . 2 𝑌 = (Base‘𝐻)
2 eqid 2206 . 2 (0g𝐻) = (0g𝐻)
3 ghmgrp.q . 2 = (+g𝐻)
4 ghmgrp.1 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fof 5505 . . . 4 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
64, 5syl 14 . . 3 (𝜑𝐹:𝑋𝑌)
7 mhmmnd.3 . . . 4 (𝜑𝐺 ∈ Mnd)
8 ghmgrp.x . . . . 5 𝑋 = (Base‘𝐺)
9 mhmid.0 . . . . 5 0 = (0g𝐺)
108, 9mndidcl 13306 . . . 4 (𝐺 ∈ Mnd → 0𝑋)
117, 10syl 14 . . 3 (𝜑0𝑋)
126, 11ffvelcdmd 5723 . 2 (𝜑 → (𝐹0 ) ∈ 𝑌)
13 simplll 533 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝜑)
14 ghmgrp.f . . . . . . 7 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1513, 14syl3an1 1283 . . . . . 6 (((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
167ad3antrrr 492 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐺 ∈ Mnd)
1716, 10syl 14 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 0𝑋)
18 simplr 528 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝑖𝑋)
1915, 17, 18mhmlem 13494 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = ((𝐹0 ) (𝐹𝑖)))
20 ghmgrp.p . . . . . . . 8 + = (+g𝐺)
218, 20, 9mndlid 13311 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑖𝑋) → ( 0 + 𝑖) = 𝑖)
2216, 18, 21syl2anc 411 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ( 0 + 𝑖) = 𝑖)
2322fveq2d 5587 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = (𝐹𝑖))
2419, 23eqtr3d 2241 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹0 ) (𝐹𝑖)) = (𝐹𝑖))
25 simpr 110 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹𝑖) = 𝑎)
2625oveq2d 5967 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹0 ) (𝐹𝑖)) = ((𝐹0 ) 𝑎))
2724, 26, 253eqtr3d 2247 . . 3 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹0 ) 𝑎) = 𝑎)
28 foelcdmi 5638 . . . 4 ((𝐹:𝑋onto𝑌𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
294, 28sylan 283 . . 3 ((𝜑𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
3027, 29r19.29a 2650 . 2 ((𝜑𝑎𝑌) → ((𝐹0 ) 𝑎) = 𝑎)
3115, 18, 17mhmlem 13494 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = ((𝐹𝑖) (𝐹0 )))
328, 20, 9mndrid 13312 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑖𝑋) → (𝑖 + 0 ) = 𝑖)
3316, 18, 32syl2anc 411 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝑖 + 0 ) = 𝑖)
3433fveq2d 5587 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = (𝐹𝑖))
3531, 34eqtr3d 2241 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹𝑖) (𝐹0 )) = (𝐹𝑖))
3625oveq1d 5966 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹𝑖) (𝐹0 )) = (𝑎 (𝐹0 )))
3735, 36, 253eqtr3d 2247 . . 3 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝑎 (𝐹0 )) = 𝑎)
3837, 29r19.29a 2650 . 2 ((𝜑𝑎𝑌) → (𝑎 (𝐹0 )) = 𝑎)
391, 2, 3, 12, 30, 38ismgmid2 13256 1 (𝜑 → (𝐹0 ) = (0g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wrex 2486  wf 5272  ontowfo 5274  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Mndcmnd 13292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293
This theorem is referenced by:  mhmfmhm  13497  ghmgrp  13498
  Copyright terms: Public domain W3C validator