| Step | Hyp | Ref
 | Expression | 
| 1 |   | ghmgrp.y | 
. 2
⊢ 𝑌 = (Base‘𝐻) | 
| 2 |   | eqid 2196 | 
. 2
⊢
(0g‘𝐻) = (0g‘𝐻) | 
| 3 |   | ghmgrp.q | 
. 2
⊢  ⨣ =
(+g‘𝐻) | 
| 4 |   | ghmgrp.1 | 
. . . 4
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | 
| 5 |   | fof 5480 | 
. . . 4
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | 
| 6 | 4, 5 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | 
| 7 |   | mhmmnd.3 | 
. . . 4
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 8 |   | ghmgrp.x | 
. . . . 5
⊢ 𝑋 = (Base‘𝐺) | 
| 9 |   | mhmid.0 | 
. . . . 5
⊢  0 =
(0g‘𝐺) | 
| 10 | 8, 9 | mndidcl 13071 | 
. . . 4
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝑋) | 
| 11 | 7, 10 | syl 14 | 
. . 3
⊢ (𝜑 → 0 ∈ 𝑋) | 
| 12 | 6, 11 | ffvelcdmd 5698 | 
. 2
⊢ (𝜑 → (𝐹‘ 0 ) ∈ 𝑌) | 
| 13 |   | simplll 533 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝜑) | 
| 14 |   | ghmgrp.f | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 15 | 13, 14 | syl3an1 1282 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | 
| 16 | 7 | ad3antrrr 492 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝐺 ∈ Mnd) | 
| 17 | 16, 10 | syl 14 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 0 ∈ 𝑋) | 
| 18 |   | simplr 528 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → 𝑖 ∈ 𝑋) | 
| 19 | 15, 17, 18 | mhmlem 13244 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = ((𝐹‘ 0 ) ⨣ (𝐹‘𝑖))) | 
| 20 |   | ghmgrp.p | 
. . . . . . . 8
⊢  + =
(+g‘𝐺) | 
| 21 | 8, 20, 9 | mndlid 13076 | 
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋) → ( 0 + 𝑖) = 𝑖) | 
| 22 | 16, 18, 21 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ( 0 + 𝑖) = 𝑖) | 
| 23 | 22 | fveq2d 5562 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = (𝐹‘𝑖)) | 
| 24 | 19, 23 | eqtr3d 2231 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘ 0 ) ⨣ (𝐹‘𝑖)) = (𝐹‘𝑖)) | 
| 25 |   | simpr 110 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘𝑖) = 𝑎) | 
| 26 | 25 | oveq2d 5938 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘ 0 ) ⨣ (𝐹‘𝑖)) = ((𝐹‘ 0 ) ⨣ 𝑎)) | 
| 27 | 24, 26, 25 | 3eqtr3d 2237 | 
. . 3
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘ 0 ) ⨣ 𝑎) = 𝑎) | 
| 28 |   | foelcdmi 5613 | 
. . . 4
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) | 
| 29 | 4, 28 | sylan 283 | 
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ∃𝑖 ∈ 𝑋 (𝐹‘𝑖) = 𝑎) | 
| 30 | 27, 29 | r19.29a 2640 | 
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → ((𝐹‘ 0 ) ⨣ 𝑎) = 𝑎) | 
| 31 | 15, 18, 17 | mhmlem 13244 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = ((𝐹‘𝑖) ⨣ (𝐹‘ 0 ))) | 
| 32 | 8, 20, 9 | mndrid 13077 | 
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑖 ∈ 𝑋) → (𝑖 + 0 ) = 𝑖) | 
| 33 | 16, 18, 32 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑖 + 0 ) = 𝑖) | 
| 34 | 33 | fveq2d 5562 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = (𝐹‘𝑖)) | 
| 35 | 31, 34 | eqtr3d 2231 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘𝑖) ⨣ (𝐹‘ 0 )) = (𝐹‘𝑖)) | 
| 36 | 25 | oveq1d 5937 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → ((𝐹‘𝑖) ⨣ (𝐹‘ 0 )) = (𝑎 ⨣ (𝐹‘ 0 ))) | 
| 37 | 35, 36, 25 | 3eqtr3d 2237 | 
. . 3
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) ∧ (𝐹‘𝑖) = 𝑎) → (𝑎 ⨣ (𝐹‘ 0 )) = 𝑎) | 
| 38 | 37, 29 | r19.29a 2640 | 
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑌) → (𝑎 ⨣ (𝐹‘ 0 )) = 𝑎) | 
| 39 | 1, 2, 3, 12, 30, 38 | ismgmid2 13023 | 
1
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘𝐻)) |