ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmid GIF version

Theorem mhmid 12835
Description: A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
mhmmnd.3 (𝜑𝐺 ∈ Mnd)
mhmid.0 0 = (0g𝐺)
Assertion
Ref Expression
mhmid (𝜑 → (𝐹0 ) = (0g𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦

Proof of Theorem mhmid
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.y . 2 𝑌 = (Base‘𝐻)
2 eqid 2173 . 2 (0g𝐻) = (0g𝐻)
3 ghmgrp.q . 2 = (+g𝐻)
4 ghmgrp.1 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fof 5427 . . . 4 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
64, 5syl 14 . . 3 (𝜑𝐹:𝑋𝑌)
7 mhmmnd.3 . . . 4 (𝜑𝐺 ∈ Mnd)
8 ghmgrp.x . . . . 5 𝑋 = (Base‘𝐺)
9 mhmid.0 . . . . 5 0 = (0g𝐺)
108, 9mndidcl 12693 . . . 4 (𝐺 ∈ Mnd → 0𝑋)
117, 10syl 14 . . 3 (𝜑0𝑋)
126, 11ffvelrnd 5641 . 2 (𝜑 → (𝐹0 ) ∈ 𝑌)
13 simplll 531 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝜑)
14 ghmgrp.f . . . . . . 7 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1513, 14syl3an1 1269 . . . . . 6 (((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
167ad3antrrr 492 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐺 ∈ Mnd)
1716, 10syl 14 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 0𝑋)
18 simplr 528 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝑖𝑋)
1915, 17, 18mhmlem 12834 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = ((𝐹0 ) (𝐹𝑖)))
20 ghmgrp.p . . . . . . . 8 + = (+g𝐺)
218, 20, 9mndlid 12698 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑖𝑋) → ( 0 + 𝑖) = 𝑖)
2216, 18, 21syl2anc 411 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ( 0 + 𝑖) = 𝑖)
2322fveq2d 5508 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘( 0 + 𝑖)) = (𝐹𝑖))
2419, 23eqtr3d 2208 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹0 ) (𝐹𝑖)) = (𝐹𝑖))
25 simpr 110 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹𝑖) = 𝑎)
2625oveq2d 5878 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹0 ) (𝐹𝑖)) = ((𝐹0 ) 𝑎))
2724, 26, 253eqtr3d 2214 . . 3 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹0 ) 𝑎) = 𝑎)
28 foelrni 5557 . . . 4 ((𝐹:𝑋onto𝑌𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
294, 28sylan 283 . . 3 ((𝜑𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
3027, 29r19.29a 2616 . 2 ((𝜑𝑎𝑌) → ((𝐹0 ) 𝑎) = 𝑎)
3115, 18, 17mhmlem 12834 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = ((𝐹𝑖) (𝐹0 )))
328, 20, 9mndrid 12699 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑖𝑋) → (𝑖 + 0 ) = 𝑖)
3316, 18, 32syl2anc 411 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝑖 + 0 ) = 𝑖)
3433fveq2d 5508 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(𝑖 + 0 )) = (𝐹𝑖))
3531, 34eqtr3d 2208 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹𝑖) (𝐹0 )) = (𝐹𝑖))
3625oveq1d 5877 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹𝑖) (𝐹0 )) = (𝑎 (𝐹0 )))
3735, 36, 253eqtr3d 2214 . . 3 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝑎 (𝐹0 )) = 𝑎)
3837, 29r19.29a 2616 . 2 ((𝜑𝑎𝑌) → (𝑎 (𝐹0 )) = 𝑎)
391, 2, 3, 12, 30, 38ismgmid2 12661 1 (𝜑 → (𝐹0 ) = (0g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 976   = wceq 1351  wcel 2144  wrex 2452  wf 5201  ontowfo 5203  cfv 5205  (class class class)co 5862  Basecbs 12425  +gcplusg 12489  0gc0g 12623  Mndcmnd 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-fo 5211  df-fv 5213  df-riota 5818  df-ov 5865  df-inn 8888  df-2 8946  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680
This theorem is referenced by:  mhmfmhm  12837  ghmgrp  12838
  Copyright terms: Public domain W3C validator