| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) | 
| 2 | 1 | adantr 276 | 
. . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ) | 
| 3 |   | eqcom 2198 | 
. . . . . . . . 9
⊢ (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴) | 
| 4 |   | nn0cn 9259 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℂ) | 
| 5 | 4 | 3ad2ant1 1020 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝐴 ∈
ℂ) | 
| 6 | 5 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ) | 
| 7 |   | nn0z 9346 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) | 
| 8 |   | zq 9700 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) | 
| 9 | 7, 8 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℚ) | 
| 10 | 9 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝐴 ∈
ℚ) | 
| 11 | 10 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ) | 
| 12 |   | simpl2 1003 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ) | 
| 13 |   | simpl3 1004 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀) | 
| 14 | 11, 12, 13 | modqcld 10420 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ) | 
| 15 |   | qcn 9708 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ) | 
| 16 | 14, 15 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ) | 
| 17 |   | eleq1 2259 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) | 
| 18 | 17 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) | 
| 19 | 16, 18 | mpbid 147 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ) | 
| 20 | 19 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ) | 
| 21 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
ℂ) | 
| 22 | 21 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) | 
| 23 |   | qcn 9708 | 
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℚ → 𝑀 ∈
ℂ) | 
| 24 | 12, 23 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ) | 
| 25 | 24 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ) | 
| 26 | 22, 25 | mulcld 8047 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ) | 
| 27 | 6, 20, 26 | subadd2d 8356 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)) | 
| 28 | 3, 27 | bitr4id 199 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) | 
| 29 | 5 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ) | 
| 30 | 29, 19 | subcld 8337 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → (𝐴 − 𝐵) ∈ ℂ) | 
| 31 | 30 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) | 
| 32 |   | qre 9699 | 
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℚ → 𝑀 ∈
ℝ) | 
| 33 | 32 | 3ad2ant2 1021 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝑀 ∈
ℝ) | 
| 34 | 33 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ) | 
| 35 | 13 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀) | 
| 36 | 34, 35 | gt0ap0d 8656 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0) | 
| 37 | 31, 22, 25, 36 | divmulap3d 8852 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) | 
| 38 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝐵 = (𝐴 mod 𝑀) → (𝐴 − 𝐵) = (𝐴 − (𝐴 mod 𝑀))) | 
| 39 | 38 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (𝐵 = (𝐴 mod 𝑀) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 40 | 39 | eqcoms 2199 | 
. . . . . . . . . . . 12
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 41 | 40 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 42 | 41 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 43 |   | modqdiffl 10427 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 <
𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 44 | 9, 43 | syl3an1 1282 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 45 | 44 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 46 | 42, 45 | eqtrd 2229 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 47 | 46 | eqeq1d 2205 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) | 
| 48 | 28, 37, 47 | 3bitr2d 216 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) | 
| 49 |   | qre 9699 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) | 
| 50 | 10, 49 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝐴 ∈
ℝ) | 
| 51 |   | nn0ge0 9274 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) | 
| 52 | 51 | 3ad2ant1 1020 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
≤ 𝐴) | 
| 53 |   | simp3 1001 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
< 𝑀) | 
| 54 |   | divge0 8900 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀)) | 
| 55 | 50, 52, 33, 53, 54 | syl22anc 1250 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
≤ (𝐴 / 𝑀)) | 
| 56 |   | simp2 1000 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝑀 ∈
ℚ) | 
| 57 | 53 | gt0ne0d 8539 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
𝑀 ≠ 0) | 
| 58 |   | qdivcl 9717 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ) | 
| 59 | 10, 56, 57, 58 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
(𝐴 / 𝑀) ∈ ℚ) | 
| 60 |   | 0z 9337 | 
. . . . . . . . . . 11
⊢ 0 ∈
ℤ | 
| 61 |   | flqge 10372 | 
. . . . . . . . . . 11
⊢ (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ)
→ (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤
(⌊‘(𝐴 / 𝑀)))) | 
| 62 | 59, 60, 61 | sylancl 413 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → (0
≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀)))) | 
| 63 | 55, 62 | mpbid 147 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) → 0
≤ (⌊‘(𝐴 /
𝑀))) | 
| 64 |   | breq2 4037 | 
. . . . . . . . 9
⊢
((⌊‘(𝐴 /
𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖)) | 
| 65 | 63, 64 | syl5ibcom 155 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) | 
| 66 | 65 | ad2antrr 488 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) →
((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) | 
| 67 | 48, 66 | sylbid 150 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖)) | 
| 68 | 67 | imp 124 | 
. . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖) | 
| 69 |   | elnn0z 9339 | 
. . . . 5
⊢ (𝑖 ∈ ℕ0
↔ (𝑖 ∈ ℤ
∧ 0 ≤ 𝑖)) | 
| 70 | 2, 68, 69 | sylanbrc 417 | 
. . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0) | 
| 71 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀)) | 
| 72 | 71 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵)) | 
| 73 | 72 | eqeq2d 2208 | 
. . . . 5
⊢ (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 74 | 73 | adantl 277 | 
. . . 4
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 75 |   | simpr 110 | 
. . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵)) | 
| 76 | 70, 74, 75 | rspcedvd 2874 | 
. . 3
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) | 
| 77 |   | modqmuladdim 10459 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 <
𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 78 | 7, 77 | syl3an1 1282 | 
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 79 | 78 | imp 124 | 
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) | 
| 80 | 76, 79 | r19.29a 2640 | 
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) ∧
(𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) | 
| 81 | 80 | ex 115 | 
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈ ℚ
∧ 0 < 𝑀) →
((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |