ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 GIF version

Theorem modqmuladdnn0 9924
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modqmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 271 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 nn0cn 8781 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
433ad2ant1 967 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℂ)
54ad2antrr 473 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
6 nn0z 8868 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
7 zq 9210 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
86, 7syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
983ad2ant1 967 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℚ)
109adantr 271 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ)
11 simpl2 950 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ)
12 simpl3 951 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀)
1310, 11, 12modqcld 9884 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ)
14 qcn 9218 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ)
1513, 14syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
16 eleq1 2157 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1716adantl 272 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1815, 17mpbid 146 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1918adantr 271 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
20 zcn 8853 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2120adantl 272 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
22 qcn 9218 . . . . . . . . . . . . 13 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
2311, 22syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ)
2423adantr 271 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2521, 24mulcld 7605 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
265, 19, 25subadd2d 7909 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
27 eqcom 2097 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
2826, 27syl6rbbr 198 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
294adantr 271 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
3029, 18subcld 7890 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
3130adantr 271 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
32 qre 9209 . . . . . . . . . . . 12 (𝑀 ∈ ℚ → 𝑀 ∈ ℝ)
33323ad2ant2 968 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℝ)
3433ad2antrr 473 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ)
3512adantr 271 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀)
3634, 35gt0ap0d 8202 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0)
3731, 21, 24, 36divmulap3d 8389 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
38 oveq2 5698 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3938oveq1d 5705 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4039eqcoms 2098 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4140adantl 272 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4241adantr 271 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
43 modqdiffl 9891 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
448, 43syl3an1 1214 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4544ad2antrr 473 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4642, 45eqtrd 2127 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4746eqeq1d 2103 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4828, 37, 473bitr2d 215 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
49 qre 9209 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
509, 49syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℝ)
51 nn0ge0 8796 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
52513ad2ant1 967 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ 𝐴)
53 simp3 948 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 < 𝑀)
54 divge0 8431 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5550, 52, 33, 53, 54syl22anc 1182 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 / 𝑀))
56 simp2 947 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
5753gt0ne0d 8087 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ≠ 0)
58 qdivcl 9227 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
599, 56, 57, 58syl3anc 1181 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 / 𝑀) ∈ ℚ)
60 0z 8859 . . . . . . . . . . 11 0 ∈ ℤ
61 flqge 9838 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6259, 60, 61sylancl 405 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6355, 62mpbid 146 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
64 breq2 3871 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6563, 64syl5ibcom 154 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6665ad2antrr 473 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6748, 66sylbid 149 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6867imp 123 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
69 elnn0z 8861 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
702, 68, 69sylanbrc 409 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
71 oveq1 5697 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
7271oveq1d 5705 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
7372eqeq2d 2106 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473adantl 272 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
75 simpr 109 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7670, 74, 75rspcedvd 2742 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
77 modqmuladdim 9923 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
786, 77syl3an1 1214 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7978imp 123 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
8076, 79r19.29a 2525 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
8180ex 114 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445  wne 2262  wrex 2371   class class class wbr 3867  cfv 5049  (class class class)co 5690  cc 7445  cr 7446  0cc0 7447   + caddc 7450   · cmul 7452   < clt 7619  cle 7620  cmin 7750   / cdiv 8236  0cn0 8771  cz 8848  cq 9203  cfl 9824   mod cmo 9878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-q 9204  df-rp 9234  df-ico 9460  df-fl 9826  df-mod 9879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator