ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 GIF version

Theorem modqmuladdnn0 10276
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modqmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 274 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 eqcom 2159 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
4 nn0cn 9105 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
543ad2ant1 1003 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℂ)
65ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
7 nn0z 9192 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
8 zq 9541 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
97, 8syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
1093ad2ant1 1003 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℚ)
1110adantr 274 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ)
12 simpl2 986 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ)
13 simpl3 987 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀)
1411, 12, 13modqcld 10236 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ)
15 qcn 9549 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ)
1614, 15syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
17 eleq1 2220 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1817adantl 275 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1916, 18mpbid 146 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
2019adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
21 zcn 9177 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2221adantl 275 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
23 qcn 9549 . . . . . . . . . . . . 13 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
2412, 23syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ)
2524adantr 274 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2622, 25mulcld 7900 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
276, 20, 26subadd2d 8209 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
283, 27bitr4id 198 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
295adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
3029, 19subcld 8190 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
3130adantr 274 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
32 qre 9540 . . . . . . . . . . . 12 (𝑀 ∈ ℚ → 𝑀 ∈ ℝ)
33323ad2ant2 1004 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℝ)
3433ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ)
3513adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀)
3634, 35gt0ap0d 8508 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0)
3731, 22, 25, 36divmulap3d 8702 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
38 oveq2 5834 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3938oveq1d 5841 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4039eqcoms 2160 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4140adantl 275 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4241adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
43 modqdiffl 10243 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
449, 43syl3an1 1253 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4544ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4642, 45eqtrd 2190 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4746eqeq1d 2166 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4828, 37, 473bitr2d 215 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
49 qre 9540 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
5010, 49syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℝ)
51 nn0ge0 9120 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
52513ad2ant1 1003 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ 𝐴)
53 simp3 984 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 < 𝑀)
54 divge0 8749 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5550, 52, 33, 53, 54syl22anc 1221 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 / 𝑀))
56 simp2 983 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
5753gt0ne0d 8391 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ≠ 0)
58 qdivcl 9558 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
5910, 56, 57, 58syl3anc 1220 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 / 𝑀) ∈ ℚ)
60 0z 9183 . . . . . . . . . . 11 0 ∈ ℤ
61 flqge 10190 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6259, 60, 61sylancl 410 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6355, 62mpbid 146 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
64 breq2 3971 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6563, 64syl5ibcom 154 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6665ad2antrr 480 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6748, 66sylbid 149 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6867imp 123 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
69 elnn0z 9185 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
702, 68, 69sylanbrc 414 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
71 oveq1 5833 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
7271oveq1d 5841 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
7372eqeq2d 2169 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473adantl 275 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
75 simpr 109 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7670, 74, 75rspcedvd 2822 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
77 modqmuladdim 10275 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
787, 77syl3an1 1253 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7978imp 123 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
8076, 79r19.29a 2600 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
8180ex 114 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  wne 2327  wrex 2436   class class class wbr 3967  cfv 5172  (class class class)co 5826  cc 7732  cr 7733  0cc0 7734   + caddc 7737   · cmul 7739   < clt 7914  cle 7915  cmin 8050   / cdiv 8549  0cn0 9095  cz 9172  cq 9534  cfl 10176   mod cmo 10230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-n0 9096  df-z 9173  df-q 9535  df-rp 9567  df-ico 9804  df-fl 10178  df-mod 10231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator