ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 GIF version

Theorem modqmuladdnn0 10172
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modqmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 274 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 eqcom 2142 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
4 nn0cn 9011 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
543ad2ant1 1003 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℂ)
65ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
7 nn0z 9098 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
8 zq 9445 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
97, 8syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
1093ad2ant1 1003 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℚ)
1110adantr 274 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ)
12 simpl2 986 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ)
13 simpl3 987 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀)
1411, 12, 13modqcld 10132 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ)
15 qcn 9453 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ)
1614, 15syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
17 eleq1 2203 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1817adantl 275 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1916, 18mpbid 146 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
2019adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
21 zcn 9083 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2221adantl 275 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
23 qcn 9453 . . . . . . . . . . . . 13 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
2412, 23syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ)
2524adantr 274 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2622, 25mulcld 7810 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
276, 20, 26subadd2d 8116 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
283, 27bitr4id 198 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
295adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
3029, 19subcld 8097 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
3130adantr 274 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
32 qre 9444 . . . . . . . . . . . 12 (𝑀 ∈ ℚ → 𝑀 ∈ ℝ)
33323ad2ant2 1004 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℝ)
3433ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ)
3513adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀)
3634, 35gt0ap0d 8415 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0)
3731, 22, 25, 36divmulap3d 8609 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
38 oveq2 5790 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3938oveq1d 5797 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4039eqcoms 2143 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4140adantl 275 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4241adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
43 modqdiffl 10139 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
449, 43syl3an1 1250 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4544ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4642, 45eqtrd 2173 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4746eqeq1d 2149 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4828, 37, 473bitr2d 215 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
49 qre 9444 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
5010, 49syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℝ)
51 nn0ge0 9026 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
52513ad2ant1 1003 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ 𝐴)
53 simp3 984 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 < 𝑀)
54 divge0 8655 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5550, 52, 33, 53, 54syl22anc 1218 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 / 𝑀))
56 simp2 983 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
5753gt0ne0d 8298 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ≠ 0)
58 qdivcl 9462 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
5910, 56, 57, 58syl3anc 1217 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 / 𝑀) ∈ ℚ)
60 0z 9089 . . . . . . . . . . 11 0 ∈ ℤ
61 flqge 10086 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6259, 60, 61sylancl 410 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6355, 62mpbid 146 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
64 breq2 3941 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6563, 64syl5ibcom 154 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6665ad2antrr 480 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6748, 66sylbid 149 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6867imp 123 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
69 elnn0z 9091 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
702, 68, 69sylanbrc 414 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
71 oveq1 5789 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
7271oveq1d 5797 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
7372eqeq2d 2152 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473adantl 275 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
75 simpr 109 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7670, 74, 75rspcedvd 2799 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
77 modqmuladdim 10171 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
787, 77syl3an1 1250 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7978imp 123 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
8076, 79r19.29a 2578 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
8180ex 114 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wne 2309  wrex 2418   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957   / cdiv 8456  0cn0 9001  cz 9078  cq 9438  cfl 10072   mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-ico 9707  df-fl 10074  df-mod 10127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator