ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 GIF version

Theorem modqmuladdnn0 10439
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modqmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 276 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 eqcom 2195 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
4 nn0cn 9250 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
543ad2ant1 1020 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℂ)
65ad2antrr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
7 nn0z 9337 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
8 zq 9691 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
97, 8syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ0𝐴 ∈ ℚ)
1093ad2ant1 1020 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℚ)
1110adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ)
12 simpl2 1003 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ)
13 simpl3 1004 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀)
1411, 12, 13modqcld 10399 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ)
15 qcn 9699 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ)
1614, 15syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
17 eleq1 2256 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1817adantl 277 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1916, 18mpbid 147 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
2019adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
21 zcn 9322 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2221adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
23 qcn 9699 . . . . . . . . . . . . 13 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
2412, 23syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℂ)
2524adantr 276 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2622, 25mulcld 8040 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
276, 20, 26subadd2d 8349 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
283, 27bitr4id 199 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
295adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
3029, 19subcld 8330 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
3130adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
32 qre 9690 . . . . . . . . . . . 12 (𝑀 ∈ ℚ → 𝑀 ∈ ℝ)
33323ad2ant2 1021 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℝ)
3433ad2antrr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℝ)
3513adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 0 < 𝑀)
3634, 35gt0ap0d 8648 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 # 0)
3731, 22, 25, 36divmulap3d 8844 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
38 oveq2 5926 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3938oveq1d 5933 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4039eqcoms 2196 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4140adantl 277 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
4241adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
43 modqdiffl 10406 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
449, 43syl3an1 1282 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4544ad2antrr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4642, 45eqtrd 2226 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4746eqeq1d 2202 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4828, 37, 473bitr2d 216 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
49 qre 9690 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
5010, 49syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝐴 ∈ ℝ)
51 nn0ge0 9265 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
52513ad2ant1 1020 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ 𝐴)
53 simp3 1001 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 < 𝑀)
54 divge0 8892 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5550, 52, 33, 53, 54syl22anc 1250 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 / 𝑀))
56 simp2 1000 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
5753gt0ne0d 8531 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ≠ 0)
58 qdivcl 9708 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 𝑀 ≠ 0) → (𝐴 / 𝑀) ∈ ℚ)
5910, 56, 57, 58syl3anc 1249 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 / 𝑀) ∈ ℚ)
60 0z 9328 . . . . . . . . . . 11 0 ∈ ℤ
61 flqge 10351 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℚ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6259, 60, 61sylancl 413 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6355, 62mpbid 147 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
64 breq2 4033 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6563, 64syl5ibcom 155 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6665ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6748, 66sylbid 150 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6867imp 124 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
69 elnn0z 9330 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
702, 68, 69sylanbrc 417 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
71 oveq1 5925 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
7271oveq1d 5933 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
7372eqeq2d 2205 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473adantl 277 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
75 simpr 110 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7670, 74, 75rspcedvd 2870 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
77 modqmuladdim 10438 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
787, 77syl3an1 1282 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7978imp 124 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
8076, 79r19.29a 2637 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
8180ex 115 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wne 2364  wrex 2473   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190   / cdiv 8691  0cn0 9240  cz 9317  cq 9684  cfl 10337   mod cmo 10393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-q 9685  df-rp 9720  df-ico 9960  df-fl 10339  df-mod 10394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator