ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raltpg GIF version

Theorem raltpg 3696
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
raltpg.3 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
raltpg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem raltpg
StepHypRef Expression
1 ralprg.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
2 ralprg.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2ralprg 3694 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
4 raltpg.3 . . . . 5 (𝑥 = 𝐶 → (𝜑𝜃))
54ralsng 3683 . . . 4 (𝐶𝑋 → (∀𝑥 ∈ {𝐶}𝜑𝜃))
63, 5bi2anan9 606 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∧ 𝜃)))
763impa 1197 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∧ 𝜃)))
8 df-tp 3651 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98raleqi 2709 . . 3 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑)
10 ralunb 3362 . . 3 (∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑))
119, 10bitri 184 . 2 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑))
12 df-3an 983 . 2 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
137, 11, 123bitr4g 223 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  wral 2486  cun 3172  {csn 3643  {cpr 3644  {ctp 3645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-sbc 3006  df-un 3178  df-sn 3649  df-pr 3650  df-tp 3651
This theorem is referenced by:  raltp  3700  sumtp  11840
  Copyright terms: Public domain W3C validator