ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raltpg GIF version

Theorem raltpg 3544
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
raltpg.3 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
raltpg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem raltpg
StepHypRef Expression
1 ralprg.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
2 ralprg.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2ralprg 3542 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
4 raltpg.3 . . . . 5 (𝑥 = 𝐶 → (𝜑𝜃))
54ralsng 3532 . . . 4 (𝐶𝑋 → (∀𝑥 ∈ {𝐶}𝜑𝜃))
63, 5bi2anan9 578 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∧ 𝜃)))
763impa 1159 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∧ 𝜃)))
8 df-tp 3503 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98raleqi 2605 . . 3 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑)
10 ralunb 3225 . . 3 (∀𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑))
119, 10bitri 183 . 2 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ∀𝑥 ∈ {𝐶}𝜑))
12 df-3an 947 . 2 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
137, 11, 123bitr4g 222 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  wral 2391  cun 3037  {csn 3495  {cpr 3496  {ctp 3497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660  df-sbc 2881  df-un 3043  df-sn 3501  df-pr 3502  df-tp 3503
This theorem is referenced by:  raltp  3548  sumtp  11123
  Copyright terms: Public domain W3C validator