ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsng GIF version

Theorem ralsng 3662
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsng (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsng
StepHypRef Expression
1 ralsns 3660 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
2 ralsng.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 3022 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
41, 3bitrd 188 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wral 2475  [wsbc 2989  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-sbc 2990  df-sn 3628
This theorem is referenced by:  ralsn  3665  ralprg  3673  raltpg  3675  ralunsn  3827  iinxsng  3990  posng  4735  fimax2gtrilemstep  6961  iseqf1olemqk  10599  seq3f1olemstep  10606  fimaxre2  11392  mgm1  13013  sgrp1  13054  mnd1  13087  grp1  13238  0subg  13329  ring1  13615  2sqlem10  15366  nninfsellemdc  15654
  Copyright terms: Public domain W3C validator